【題目】已知雙曲線C: =1(a>0,b>0)的左、右焦點(diǎn)分別為F1 , F2 , O為坐標(biāo)原點(diǎn),P是雙曲線在第一象限上的點(diǎn)且滿足|PF1|=2|PF2|,直線PF2交雙曲線C于另一點(diǎn)N,又點(diǎn)M滿足 = 且∠MF2N=120°,則雙曲線C的離心率為(
A.
B.
C.
D.

【答案】B
【解析】解:由題意,|PF1|=2|PF2|, 由雙曲線的定義可得,|PF1|﹣|PF2|=2a,
可得|PF1|=4a,|PF2|=2a,
由四邊形PF1MF2為平行四邊形,
又∠MF2N=120°,可得∠F1PF2=120°,
在三角形PF1F2中,由余弦定理可得
4c2=16a2+4a2﹣24a2acos120°,
即有4c2=20a2+8a2 , 即c2=7a2 ,
可得c= a,
即e= =
故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在小正方形邊長為1的網(wǎng)格中畫出了某多面體的三視圖,則該多面體的外接球表面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),若g(x)=f(x+1)+5,g′(x)為g(x)的導(dǎo)函數(shù),對x∈R,總有g(shù)′(x)>2x,則g(x)<x2+4的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國有個名句“運(yùn)籌帷幄之中,決勝千里之外”,其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌,古代是用算籌來進(jìn)行計算,算籌是將幾寸長的小竹棍擺在平面上進(jìn)行運(yùn)算,算籌的擺放形式有縱橫兩種形式,如圖,當(dāng)表示一個多位數(shù)時,像阿拉伯計數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個位,百位,萬位數(shù)用縱式表示,十位,千位,十萬位用橫式表示,以此類推.例如 6613 用算籌表示就是 ,則 8335 用算籌可表示為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科技博覽會展出的智能機(jī)器人有 A,B,C,D 四種型號,每種型號至少有 4 臺.要求每 位購買者只能購買1臺某種型號的機(jī)器人,且購買其中任意一種型號的機(jī)器人是等可能的.現(xiàn)在有 4 個人要購買機(jī)器人.
(Ⅰ)在會場展覽臺上,展出方已放好了 A,B,C,D 四種型號的機(jī)器人各一臺,現(xiàn)把他們 排成一排表演節(jié)目,求 A 型與 B 型相鄰且 C 型與 D 型不相鄰的概率;
(Ⅱ)設(shè)這 4 個人購買的機(jī)器人的型號種數(shù)為ξ,求ξ 的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年雙十一期間,某電子產(chǎn)品銷售商促銷某種電子產(chǎn)品,該產(chǎn)品的成本為2元/件,通過市場分析,雙十一期間該電子產(chǎn)品銷售量y(單位:千件)與銷售價格x(單位:元)之間滿足關(guān)系式:y= +2x2﹣35x+170(其中2<x<8,a為常數(shù)),且已知當(dāng)銷售價格為3元/件時,該電子產(chǎn)品銷售量為89千件. (Ⅰ)求實(shí)數(shù)a的值及雙十一期間銷售該電子產(chǎn)品獲得的總利潤L(x);
(Ⅱ)銷售價格x為多少時,所獲得的總利潤L(x)最大?并求出總利潤L(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)為偶函數(shù),當(dāng)x<0時,f(x)=ln(﹣x)+3x,則曲線y=f(x)在點(diǎn)(1,﹣3)處的切線方程是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(m+2cos2x)cos(2x+θ)為奇函數(shù),且f( )=0,其中m∈R,θ∈(0,π)
(Ⅰ)求函數(shù)f(x)的圖象的對稱中心和單調(diào)遞增區(qū)間
(Ⅱ)在△ABC中,角A,B,C的對邊分別是a,b,c,且f( + )=﹣ ,c=1,ab=2 ,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知g(x)是定義在R上的奇函數(shù),且當(dāng)x<0時,g(x)=﹣ln(1﹣x),函數(shù)f(x)= ,若f(2﹣x2)>f(x),則x的取值范圍是(
A.(﹣∞,﹣2)∪(1,+∞)
B.(﹣∞,1)∪(2,+∞)
C.(﹣2,1)
D.(1,2)

查看答案和解析>>

同步練習(xí)冊答案