選修4-1:幾何證明選講
如圖所示,已知PA與⊙O相切,A為切點,過點P的割線交圓于B、C兩點,弦CDAP,AD、BC相交于點E,F(xiàn)為CE上一點,且DE2=EF•EC.
(1)求證:CE•EB=EF•EP;
(2)若CE:BE=3:2,DE=3,EF=2,求PA的長.
(I)證明:∵DE2=EF•EC,∠DEF公用,
∴△DEF△CED,
∴∠EDF=∠C.
又∵弦CDAP,∴∠P=∠C,
∴∠EDF=∠P,∠DEF=∠PEA
∴△EDF△EPA.
EA
EF
=
EP
ED
,∴EA•ED=EF•EP.
又∵EA•ED=CE•EB,
∴CE•EB=EF•EP;
(II)∵DE2=EF•EC,DE=3,EF=2.
∴32=2EC,∴CE=
9
2

∵CE:BE=3:2,∴BE=3.
由(I)可知:CE•EB=EF•EP,∴
9
2
×3=2EP
,解得EP=
27
4

∴BP=EP-EB=
27
4
-3=
15
4

∵PA是⊙O的切線,∴PA2=PB•PC,
PA2=
15
4
×(
27
4
+
9
2
)
,解得PA=
15
3
4
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

選做題.(本題滿分10分.請考生在22、23、24三題中任選一題作答,如果多做,則按所做的第一題記分.作答時,用2B鉛筆在答題卡上把所選題目對應的標號涂黑.)
選修4—1:平面幾何
如圖,Δ是內(nèi)接于⊙O,直線切⊙O于點,相交于點.

(1)求證:Δ≌Δ;
(2)若,求

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,圓O的兩弦AB和CD交于點E,EFCB,EF交AD的延長線于點F,F(xiàn)G切圓O于點G.
(1)求證:△DFE△EFA;
(2)如果EF=1,求FG的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在△ABC中,AB=AC,∠C=72°,⊙O過A、B兩點且與BC相切于點B,與AC交于點D,連接BD,若BC=
5
-1
,則AC=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知:如圖,一個圓的兩條弦AB和CE相交于點D,BE=2,BC=2BD=2
3
,∠1=∠2則EC=______,∠CBE=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,⊙O1與⊙O2相交于A、B兩點,AB是⊙O2的直徑,過A點作⊙O1的切線交⊙O2于點E,并與BO1的延長線交于點P,PB分別與⊙O1、⊙O2交于C,D兩點.
求證:
(1)PA•PD=PE•PC;
(2)AD=AE.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

選修4-1:幾何證明選講
如圖,點C是⊙O直徑BE的延長線上一點,AC是⊙O的切線,A為切點,∠ACB的平分線CD與AB相交于點D,與AE相交于點F,
(Ⅰ)求∠ADF的值
(Ⅱ)若AB=AC,求
AC
BC
的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

某單位有名職工,現(xiàn)采用系統(tǒng)抽樣方法抽取人做問卷調(diào)查,將人按隨機編號,則抽取的人中,若第一組抽取的編號為,則抽取的編號落在區(qū)間的人數(shù)是     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

[2014·天津模擬]某校對全校1600名男女學生的視力狀況進行調(diào)查,現(xiàn)用分層抽樣的方法抽取一個容量為200的樣本,已知女生比男生少抽10人,則該校的女生人數(shù)應該為________.

查看答案和解析>>

同步練習冊答案