13.已知A={x|x2-3x+2≤0},B={-2,-1,0,1,2},則A∩B=(  )
A.{-1,0}B.{0,1}C.{1,2}D.

分析 求出A的等價(jià)條件,結(jié)合集合交集的定義進(jìn)行求解即可.

解答 解:A={x|x2-3x+2≤0}={x|1≤x≤2},
則A∩B={1,2},
故選:C

點(diǎn)評(píng) 本題主要考查集合的基本運(yùn)算,求出集合的等價(jià)條件是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.△ABC的面積是10,內(nèi)角A,B,C所對(duì)邊長(zhǎng)分別為a,b,c,$cosA=\frac{12}{13}$,則$\overrightarrow{AB}•\overrightarrow{AC}$=( 。
A.144B.48C.24D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知定義域?yàn)镽的函數(shù)f(x)=a+$\frac{2bx+3sinx+bxcosx}{2+cosx}$(a,b∈R)有最大值和最小值,且最大值與最小值之和為6,則3a-2b=(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知正項(xiàng)等差數(shù)列{an}和正項(xiàng)等比數(shù)列{bn}滿足,a5=b5,則下列關(guān)系正確的是(  )
A.a1+a9≥b1+b9B.a1+a9≤b1+b9C.a1+a9>b1+b9D.a1+a9<b1+b9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若α為鈍角,$cosα=-\frac{3}{5}$,則$cos\frac{α}{2}$的值為(  )
A.$\frac{{\sqrt{5}}}{5}$B.$-\frac{{\sqrt{5}}}{5}$C.$\frac{{2\sqrt{5}}}{5}$D.$-\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.正項(xiàng)數(shù)列{an},a1=1,前n項(xiàng)和Sn滿足${S_n}•\sqrt{{S_{n-1}}}-{S_{n-1}}•\sqrt{S_n}=2\sqrt{{S_n}•{S_{n-1}}}(n≥2)$,則sn=$\frac{1}{(2n-1)^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x≤0時(shí),f(x)=3x2-2x,則f(1)=(  )
A.5B.1C.-1D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)$f(x)=({m+\frac{1}{m}})lnx+\frac{1}{x}-x$,(其中常數(shù)m>0)
(1)當(dāng)m=2時(shí),求f(x)的極大值;
(2)試討論f(x)在區(qū)間(0,1)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.求函數(shù)$y=sinx+\sqrt{3}cosx$的周期,最小值,及單調(diào)增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案