【題目】如圖,在平面直角坐標系中,橢圓的離心率為,焦點到相應準線的距離為,分別為橢圓的左頂點和下頂點,為橢圓上位于第一象限內(nèi)的一點,軸于點,軸于點.

(1)求橢圓的標準方程;

(2)若,求的值;

(3)求證:四邊形的面積為定值.

【答案】(1);(2);(3)見解析.

【解析】分析:(1)直接根據(jù)原題得到,,解方程組即得橢圓的標準方程.(2)先求出再求的值.(3) 設(shè),先求出四邊形的面積,再化簡得到四邊形的面積為定值.

詳解:(1)設(shè)右焦點,因為橢圓的離心率為,所以,①

又因為右焦點到右準線的距離為,所以,②

由①②得,,

所以橢圓的標準方程是.

(2)因為,所以,直線的方程為

,得,解得(舍)或,

可得

直線的方程為,令,得

所以.

(3)設(shè),則,即.

直線的方程為,令,得.

直線的方程為,令,得.

所以四邊形的面積

為定值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】七巧板是古代中國勞動人民發(fā)明的一種中國傳統(tǒng)智力玩具,它由五塊等腰直角三角形,一塊正方形和一塊平行四邊形共七塊板組成.清陸以湉《冷廬雜識》卷一中寫道:近又有七巧圖,其式五,其數(shù)七,其變化之式多至千余.體物肖形,隨手變幻,蓋游戲之具,足以排悶破寂,故世俗皆喜為之.如圖是一個用七巧板拼成的正方形,若在此正方形中任取一點,則此點取自陰影部分的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,對任意滿足,且,數(shù)列滿足,其前9項和為63.

(1)求數(shù)列的通項公式;

(2)令,數(shù)列的前項和為,若對任意正整數(shù),都有,求實數(shù)的取值范圍;

(3)將數(shù)列的項按照為奇數(shù)時,放在前面;當為偶數(shù)時,放在前面的要求進行交叉排列,得到一個新的數(shù)列:,求這個新數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線y=﹣x2+2x與x軸圍成的封閉區(qū)域為M,向M內(nèi)隨機投擲一點P(x,y),則P(y>x)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司年會舉行抽獎活動,每位員工均有一次抽獎機會.活動規(guī)則如下:一只盒子里裝有大小相同的6個小球,其中3個白球,2個紅球,1個黑球,抽獎時從中一次摸出3個小球,若所得的小球同色,則獲得一等獎,獎金為300元;若所得的小球顏色互不相同,則獲得二等獎,獎金為200元;若所得的小球恰有2個同色,則獲得三等獎,獎金為100元.

(1)求小張在這次活動中獲得的獎金數(shù)的概率分布及數(shù)學期望;

(2)若每個人獲獎與否互不影響,求該公司某部門3個人中至少有2個人獲二等獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex(sinx﹣ax2+2a﹣e),其中a∈R,e=2.71818…為自然數(shù)的底數(shù).
(1)當a=0時,討論函數(shù)f(x)的單調(diào)性;
(2)當 ≤a≤1時,求證:對任意的x∈[0,+∞),f(x)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調(diào)查某中學學生在周日上網(wǎng)的時間,隨機對名男生和名女生進行了不記名的問卷調(diào)查,得到了如下的統(tǒng)計結(jié)果:

表1:男、女生上網(wǎng)時間與頻數(shù)分布表

上網(wǎng)時間(分鐘)

[30,40)

[40,50)

[50,60)

[60,70)

[70,80]

男生人數(shù)

5

25

30

25

15

女生人數(shù)

10

20

40

20

10

(Ⅰ)若該中學共有女生750人,試估計其中上網(wǎng)時間不少于60分鐘的人數(shù);

(Ⅱ)完成下表,并回答能否有90%的把握認為“學生周日上網(wǎng)時間與性別有關(guān)”?

上網(wǎng)時間少于60分鐘

上網(wǎng)時間不少于60分鐘

合計

男生

女生

合計

附:公式,其中

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.83

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為菱形,四邊形ACEF為平行四邊形,設(shè)BD與AC相交于點G,AB=BD=2,AE= ,∠EAD=∠EAB.
(1)證明:平面ACEF⊥平面ABCD;
(2)若AE與平面ABCD所成角為60°,求二面角B﹣EF﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù),α為直線的傾斜角).以平面直角坐標系xOy極點,x的正半軸為極軸,取相同的長度單位,建立極坐標系.圓的極坐標方程為ρ=2cosθ,設(shè)直線與圓交于A,B兩點. (Ⅰ)求圓C的直角坐標方程與α的取值范圍;
(Ⅱ)若點P的坐標為(﹣1,0),求 + 取值范圍.

查看答案和解析>>

同步練習冊答案