已知矩形ABCD中AB=3,BC=a,若PA⊥平面AC,在BC邊上取點E,使PE⊥DE,則滿足條件的E點有兩個時,a的取值范圍是______.
以A點為原點,AB、AD、AP所在直線為x,y,z軸,如圖所示.
設(shè)P(0,0,b),D(0,a,0),E(3,x,0)
PE=(3,x,-b),DE=(3,x-a,0)
∵PE⊥DE,∴PE•DE=0,
∴9+x(x-a)=0,即x2-ax+9=0.
由題意可知方程有兩個不同根,
∵△>0,即a2-4×9>0,∴a>6.
故答案為a>6
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且AB=BC=CA=
3
,AD=CD=1.
(1)求證:BD⊥AA1;
(2)在棱BC上取一點E,使得AE平面DCC1D1,求
BE
EC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

長方體ABCD-A1B1C1D1中AB=1,AA1=AD=2.點E為AB中點.
(1)求三棱錐A1-ADE的體積;
(2)求證:A1D⊥平面ABC1D1;
(3)求證:BD1平面A1DE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,長方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,點P為DD1的中點.
(1)求證:直線BD1平面PAC;
(2)求證:平面PAC⊥平面BDD1;
(3)求證:直線PB1⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,正方體AC1的棱長為1,連接AC1,交平面A1BD于H,則以下命題中,錯誤的命題是( 。
A.AC1⊥平面A1BD
B.H是△A1BD的垂心
C.AH=
3
3
D.直線AH和BB1所成角為45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知四邊形ABCD中,∠B=∠D=90°,AD=CD=
6
,∠BAC=60°,E為AC的中點;現(xiàn)將△ACD沿對角線AC折起,使點D在平面ABC上的射影H落在BC上.
(1)求證:AB⊥平面BCD;
(2)求三棱錐D-ABE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在Rt△ABC中,∠ABC=90°,P為△ABC所在平面外一點,PA⊥平面ABC,則四面體P-ABC中共有( 。﹤直角三角形.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD的底面是AB=2,BC=3的矩形,側(cè)面PAB是等邊三角形,且側(cè)面PAB⊥底面ABCD.
(Ⅰ)求證:面PAD⊥面PAB.
(Ⅱ)求二面角P-CD-A的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直三棱柱ABC-A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別為A1B1、A1A的中點.
(Ⅰ)求cos<
BA1
,
CB1
>的值;
(Ⅱ)求證:BN⊥平面C1MN;
(Ⅲ)求點B1到平面C1MN的距離.

查看答案和解析>>

同步練習(xí)冊答案