【題目】
在平面直角坐標系xOy中,曲線C的參數(shù)方程為(a為參數(shù)),在以原點為極點,x軸正半軸為極軸的極坐標系中,直線l的極坐標方程為.
(1)求C的普通方程和l的傾斜角;
(2)設(shè)點,l和C交于A,B兩點,求.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,,且對任意的正整數(shù),都有,其中常數(shù).設(shè)﹒
(1)若,求數(shù)列的通項公式;
(2)若且,設(shè),證明數(shù)列是等比數(shù)列;
(3)若對任意的正整數(shù),都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]
(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;
(2)試估計該公司投入萬元廣告費用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:
廣告投入 (單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益 (單位:萬元) | 2 | 3 | 2 | 7 |
由表中的數(shù)據(jù)顯示, 與之間存在著線性相關(guān)關(guān)系,請將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題:已知為實數(shù),若關(guān)于的不等式有非空解集,則,寫出該命題的逆命題、否命題、逆否命題,并判斷這些命題的真假.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)的圖象在點處的切線的傾斜角為,求在上的最小值;
(2)若存在,使,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)證明:當(dāng)時, ;
(3)確定實數(shù)的值,使得存在當(dāng)時,恒有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,以橢圓的上焦點為圓心,橢圓的短半軸為半徑的圓與直線截得的弦長為.
(1)求橢圓的方程;
(2)過橢圓左頂點做兩條互相垂直的直線,,且分別交橢圓于,兩點(,不是橢圓的頂點),探究直線是否過定點,若過定點則求出定點坐標,否則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,,點分別為棱的中點.
(Ⅰ)求證:∥平面
(Ⅱ)求證:平面平面;
(Ⅲ)在線段上是否存在一點,使得直線與平面所成的角為300?如果存在,求出線段的長;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了比較兩種治療失眠癥的藥(分別成為A藥,B藥)的療效,隨機地選取20位患者服用A藥,20位患者服用B藥,這40位患者服用一段時間后,記錄他們?nèi)掌骄黾拥乃邥r間(單位:h)實驗的觀測結(jié)果如下:
服用A藥的20位患者日平均增加的睡眠時間:
0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5
2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4
服用B藥的20位患者日平均增加的睡眠時間:
3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4
1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5
(1)分別計算兩組數(shù)據(jù)的平均數(shù),從計算結(jié)果來看,哪種藥的效果好?
(2)完成莖葉圖,從莖葉圖來看,哪種藥療效更好?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com