對于不等式≤n+1(n∈N+),某學(xué)生的證明過程如下:

(1)當(dāng)n=1時,≤1+1,不等式成立.

(2)假設(shè)n=k(k∈N+)時,不等式成立,即<k+1,則n=k+1時,

=(k+1)+1.

所以當(dāng)n=k+1時,不等式成立.

上述證法(    )

A.過程全部正確

B.n=1驗得不正確

C.歸納假設(shè)不正確

D.從n=k到n=k+1的推理不正確

思路解析:從n=k到n=k+1,沒有用到歸納假設(shè).

答案:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于不等式n+1(nN*),某學(xué)生證明過程如下:

       (1)當(dāng)n=1時,≤1+1,不等式成立.

       (2)假設(shè)n=k時,不等式成立,即k2+kk+1時,

       .

       ∴當(dāng)n=k+1時不等式成立.

       上述證法(  )

    A.過程全正確

    B.n=1驗證不正確

    C.歸納假設(shè)不正確

    D.從n=kn=k+1推理不正確

      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于不等式≤n+1(n∈N*),某學(xué)生的證明過程如下:

(1)當(dāng)n=1時,≤1+1,不等式成立.

(2)假設(shè)n=k(k∈N*)時,不等式成立,即≤k+1.則n=k+1時,=(k+1)+1.

∴當(dāng)n=k+1時,不等式成立.上述證法(    )

A.過程全部正確                   B.n=1驗證不正確

C.歸納假設(shè)不正確                D.從n=k到n=k+1的推理不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于不等式n+1(n∈N*),某學(xué)生的證明過程如下:

(1)當(dāng)n=1時,≤1+1,不等式成立.

(2)假設(shè)n=k(k∈N*)時,不等式成立,即k+1,則n=k+1時,.

∴當(dāng)n=k+1時,不等式成立.

上述證法(  )

A.過程全部正確

B.n=1時的驗證不正確

C.歸納假設(shè)不正確

D.沒有用到從n=kn=k+1的推理

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于不等式n+1(n∈N*),某學(xué)生的證明過程如下:

(1)當(dāng)n=1時,≤1+1,不等式成立.

(2)假設(shè)n=k(k∈N*)時,不等式成立,即k+1,則n=k+1時,.

∴當(dāng)n=k+1時,不等式成立.

上述證法(  )

A.過程全部正確

B.n=1時的驗證不正確

C.歸納假設(shè)不正確

D.沒有用到從n=kn=k+1的推理

查看答案和解析>>

同步練習(xí)冊答案