【題目】假設要考察某公司生產(chǎn)的流感疫苗的劑量是否達標,現(xiàn)從500支疫苗中抽取50支進行檢驗,利用隨機數(shù)表法抽取樣本時,先將500支疫苗按進行編號,如果從隨機數(shù)表第7行第8列的數(shù)開始向右讀,請寫出第3支疫苗的編號________.(下面摘取了隨機數(shù)表第7行至第9行)

7行:84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50

25 83 92 12 06 76

8行:63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58

07 44 39 52 38 79

9行:33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13

42 99 66 02 79 54

【答案】068

【解析】

根據(jù)隨機數(shù)表的選數(shù)方法進行選數(shù)即可.

按照隨機數(shù)表法的方法取數(shù)為331455,068,所以第3個個體的編號為068.

故答案為:068

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應運而生,某市場研究人員為了了解共享單車運營公司的經(jīng)營狀況,對該公司最近六個月的市場占有率進行了統(tǒng)計,并繪制了相應的折線圖:

1)由折線圖可以看出,可用線性回歸模型擬合月度市場占有率與月份代碼之間的關(guān)系,求關(guān)于的線性回歸方程,并

預測公司20174月的市場占有率;

2)為進一步擴大市場,公司擬再采購一批單車,現(xiàn)有采購成本分別為/輛和1200/輛的、兩款車型可供選擇,按規(guī)定每輛單車最

多使用4年,但由于多種原因(如騎行頻率等)會導致單車使用壽命各不相同,考慮到公司運營的經(jīng)濟效益,該公司決定先對這兩款車型的單車各100輛進行科學模擬測試,得到兩款單車使用壽命的頻數(shù)表如右表:經(jīng)測算,平均每輛單車每年可以帶來收入500元,不考慮除采購成本之外的其他成本,假設每輛單車的使用壽命都是整數(shù)年,且以頻率作為每輛單車使用壽命的概率,如果你是公司的負責人,以每輛單車產(chǎn)生利潤的期望值為決策依據(jù),你會選擇采購哪款車型?

參考公式:回歸直線方程為,其中,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在梯形中, . ,且平面 ,點上任意一點.

(1)求證: ;

(2)點在線段上運動(包括兩端點),若平面與平面所成的銳二面角為60°,試確定點的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的右頂點為A,上頂點為B.已知橢圓的離心率為,

(1)求橢圓的方程;

(2)設直線與橢圓交于,兩點,與直線交于點M,且點P,M均在第四象限.若的面積是面積的2倍,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若一個四位數(shù)的各位數(shù)字相加和為,則稱該數(shù)為“完美四位數(shù)”,如數(shù)字“”.試問用數(shù)字組成的無重復數(shù)字且大于的“完美四位數(shù)”有( )個

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l的方程為).

1)若直線l在兩坐標軸上的截距相等,求直線l的方程;

2)若直線lx正半軸、射線)分別交于P,Q兩點,當a為何值時,的面積最。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右頂點分別為,左焦點為,點為橢圓上任一點,若直線的斜率之積為,且橢圓經(jīng)過點.

(1)求橢圓的方程;

(2)交直線兩點,過左焦點作以為直徑的圓的切線.問切線長是否為定值,若是,請求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市舉行中學生詩詞大賽,分初賽和復賽兩個階段進行,規(guī)定:初賽成績大于90分的具有復賽資格,某校有800名學生參加了初賽,所有學生的成績均在區(qū)間內(nèi),其頻率分布直方圖如圖.

Ⅰ)求獲得復賽資格的人數(shù);

Ⅱ)從初賽得分在區(qū)間的參賽者中,利用分層抽樣的方法隨機抽取人參加學校座談交流,那么從得分在區(qū)間各抽取多少人?

Ⅲ)從(Ⅱ)抽取的人中,選出人參加全市座談交流,設表示得分在區(qū)間中參加全市座談交流的人數(shù),求的分布列及數(shù)學期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場銷售某種品牌的空調(diào)器,每周周初購進一定數(shù)量的空調(diào)器,商場每銷售一臺空調(diào)器可獲利500元,若供大于求,則每臺多余的空調(diào)器需交保管費100元;若供不應求,則可從其他商店調(diào)劑供應,此時每臺空調(diào)器僅獲利潤200元。

若該商場周初購進20臺空調(diào)器,求當周的利潤單位:元關(guān)于當周需求量n單位:臺,的函數(shù)解析式;

該商場記錄了去年夏天共10周空調(diào)器需求量n單位:臺,整理得下表:

周需求量n

18

19

20

21

22

頻數(shù)

1

2

3

3

1

以10周記錄的各需求量的頻率作為各需求量發(fā)生的概率,若商場周初購進20臺空調(diào)器,X表示當周的利潤單位:元,求X的分布列及數(shù)學期望。

查看答案和解析>>

同步練習冊答案