【題目】已知橢圓的焦距為2,過點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)橢圓的右焦點(diǎn)為,定點(diǎn),過點(diǎn)且斜率不為零的直線與橢圓交于,兩點(diǎn),以線段為直徑的圓與直線的另一個(gè)交點(diǎn)為,試探究在軸上是否存在一定點(diǎn),使直線恒過該定點(diǎn),若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】12)存在;定點(diǎn)為

【解析】

1)首先根據(jù)題意列出方程組,再解方程組即可.

2)首先設(shè),,的方程為:.聯(lián)立,利用韋達(dá)定理,結(jié)合求出直線,再令即可得到直線恒過的定點(diǎn).

1)由題知,解得,,

所以橢圓的方程為.

2)設(shè),,因?yàn)橹本的斜率不為零,令的方程為:

,,

因?yàn)橐?/span>為直徑的圓與直線的另一個(gè)交點(diǎn)為,

所以,則.

,故的方程為:.

,則

,,

所以,

所以.

故直線恒過定點(diǎn),且定點(diǎn)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某建材商場(chǎng)國(guó)慶期間搞促銷活動(dòng),規(guī)定:如果顧客選購(gòu)物品的總金額不超過600元,則不享受任何折扣優(yōu)惠;如果顧客選購(gòu)物品的總金額超過600元,則超過600元部分享受一定的折扣優(yōu)惠,折扣優(yōu)惠按下表累計(jì)計(jì)算.

某人在此商場(chǎng)購(gòu)物獲得的折扣優(yōu)惠金額為30元,則他實(shí)際所付金額為____元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為4,直線被橢圓截得的線段長(zhǎng)為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過橢圓的右頂點(diǎn)作互相垂直的兩條直線分別交橢圓兩點(diǎn)(點(diǎn)不同于橢圓的右頂點(diǎn)),證明:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)狱c(diǎn)到點(diǎn)的距離比到直線的距離小,設(shè)點(diǎn)的軌跡為曲線.

1)求曲線的方程;

2)過曲線上一點(diǎn))作兩條直線,與曲線分別交于不同的兩點(diǎn),若直線,的斜率分別為,,且.證明:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,橢圓的上、下頂點(diǎn)分別為,,左、右頂點(diǎn)分別為,,左、右焦點(diǎn)分別為,.原點(diǎn)到直線的距離為.

1)求橢圓的方程;

2是橢圓上異于的任一點(diǎn),直線,,分別交軸于點(diǎn),若直線與過點(diǎn),的圓相切,切點(diǎn)為,證明:線段的長(zhǎng)為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為).

(I)求直線的極坐標(biāo)方程及曲線的直角坐標(biāo)方程;

(Ⅱ)已知是直線上的一點(diǎn),是曲線上的一點(diǎn), ,若的最大值為2,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

()討論函數(shù)的單調(diào)性;

()證明: (為自然對(duì)數(shù)的底)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱,F、E分別是的中點(diǎn).

1)證明:平面;

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn),以軸為非負(fù)半軸為極軸建立極坐標(biāo)系,兩坐標(biāo)系相同的長(zhǎng)度單位.圓的方程為被圓截得的弦長(zhǎng)為.

(Ⅰ)求實(shí)數(shù)的值;

(Ⅱ)設(shè)圓與直線交于點(diǎn),若點(diǎn)的坐標(biāo)為,且,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案