圖是某市日至日的空氣質(zhì)量指數(shù)趨勢圖,空氣質(zhì)量指數(shù)()小于表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于表示空氣重度污染,某人隨機(jī)選擇日至日中的某一天到達(dá)該市,并停留天.

(1)求此人到達(dá)當(dāng)日空氣質(zhì)量優(yōu)良的概率;
(2)求此人停留期間至多有1天空氣重度污染的概率.

(1);(2).

解析試題分析:(1)從圖中找出天內(nèi)空氣質(zhì)量優(yōu)良的天數(shù),從而確定此人到達(dá)當(dāng)日空氣質(zhì)量優(yōu)良的概率;(2)將問題分為兩種:一種是沒有空氣質(zhì)量重度污染,另一種是只有一天空氣質(zhì)量重度污染,并從圖中找出相應(yīng)的天數(shù),從而確定題中涉及事件的概率.
試題解析:(1)在日至日這天中,只有日、日共天的空氣質(zhì)量優(yōu)良,所以此人到達(dá)當(dāng)日空氣質(zhì)量優(yōu)良的概率;
(2)根據(jù)題意,事件“此人在該市停留期間至多有天空氣重度污染”,即“此人到達(dá)該市停留期間天空氣重度污染或僅有天空氣重度污染”.
“此人在該市停留期間天空氣重度污染”等價于“此人到達(dá)該市的日期是日或日或日”.其概率為,
“此人在該市停留期間僅有天空氣重度污染”等價于“此人到達(dá)該市的日期是日或日或日或日或日”.其概率為,
所以此人停留期間至多有天空氣重度污染的概率為.
考點(diǎn):古典概型

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩名運(yùn)動員參加“選拔測試賽”,在相同條件下,兩人5次測試的成績(單位:分)記錄如下:
甲  86   77   92   72   78
乙  78   82   88   82   95
(1)用莖葉圖表示這兩組數(shù)據(jù);.
(2)現(xiàn)要從中選派一名運(yùn)動員參加比賽,你認(rèn)為選派誰參賽更好?說明理由(不用計算);
(3)若將頻率視為概率,對運(yùn)動員甲在今后三次測試成績進(jìn)行預(yù)測,記這三次成績高于分的次數(shù)為,求的分布列和數(shù)學(xué)期望..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

爸爸和亮亮用4張撲克牌(方塊2,黑桃4,黑桃5,梅花5)玩游戲,他倆將撲克牌洗勻后,背面朝上放置在桌面上,爸爸先抽,亮亮后抽,抽出的牌不放回.

(1)若爸爸恰好抽到了黑桃4.
①請把右面這種情況的樹形圖繪制完整;
②求亮亮抽出的牌的牌面數(shù)字比4大的概率.
(11)爸爸、亮亮約定,若爸爸抽到的牌的牌面數(shù)字比亮亮的大,則爸爸勝;反之,則亮亮贏,你認(rèn)為這個游戲是否公平?如果公平,請說明理由,如果不公平,更換一張撲克牌使游戲公平.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個袋中裝有形狀大小完全相同的球9個,其中紅球3個,白球6個,每次隨機(jī)取1個,直到取出3次紅球即停止.
(1)從袋中不放回地取球,求恰好取4次停止的概率P1
(2)從袋中有放回地取球.
①求恰好取5次停止的概率P2;
②記5次之內(nèi)(含5次)取到紅球的個數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某飲料公司招聘了一名員工,現(xiàn)對其進(jìn)行一項測試,以便確定工資級別.公司準(zhǔn)備了兩種不同的飲料共8杯,其顏色完全相同,并且其中4杯為A飲料,另外4杯為B飲料,公司要求此員工一一品嘗后,從8杯飲料中選出4杯A飲料,若4杯都選對,則月工資定為3500元;若4杯選對3杯,則月工資定為2 800元,否則月工資定為2100元,令X表示此人選對A飲料的杯數(shù),假設(shè)此人對A和B兩種飲料沒有鑒別能力.
(1)求X的分布列:
(2)求此員工月工資的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲乙兩個同學(xué)進(jìn)行定點(diǎn)投籃游戲,已知他們每一次投籃投中的概率均為,且各次投籃的結(jié)果互不影響.甲同學(xué)決定投5次,乙同學(xué)決定投中1次就停止,否則就繼續(xù)投下去,但投籃次數(shù)不超過5次.
(1)求甲同學(xué)至少有4次投中的概率;
(2)求乙同學(xué)投籃次數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了解甲、乙兩個快遞公司的工作狀況,假設(shè)同一個公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機(jī)抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結(jié)果中隨機(jī)抽取10天的數(shù)據(jù),制表如下:

甲公司某員工A
 
乙公司某員工B
3
9
6
5
8
3
3
2
3
4
6
6
6
7
7
 
 
 
 
 
 
0
1
4
4
2
2
2
 
 
每名快遞員完成一件貨物投遞可獲得的勞務(wù)費(fèi)情況如下:
甲公司規(guī)定每件4.5元;乙公司規(guī)定每天35件以內(nèi)(含35件)的部分每件4元,超出35件的部分每件7元.
(1)根據(jù)表中數(shù)據(jù)寫出甲公司員工A在這10天投遞的快遞件數(shù)的平均數(shù)和眾數(shù);
(2)為了解乙公司員工B的每天所得勞務(wù)費(fèi)的情況,從這10天中隨機(jī)抽取1天,他所得的勞務(wù)費(fèi)記為(單位:元),求的分布列和數(shù)學(xué)期望;
(3)根據(jù)表中數(shù)據(jù)估算兩公司的每位員工在該月所得的勞務(wù)費(fèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知一個矩形由三個相同的小矩形拼湊而成(如圖所示),用三種不同顏色給3個小矩形涂色,每個小矩形只涂一種顏色,求:

(1)3個矩形都涂同一顏色的概率;
(2)3個小矩形顏色都不同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線l1:x-2y-1=0,直線l2:ax-by+1=0,其中a,b∈{1,2,3,4,5,6}.
(1) 求直線l1與l2相交的概率;
(2) 求直線l1與l2的交點(diǎn)位于第一象限的概率.

查看答案和解析>>

同步練習(xí)冊答案