如圖,正四棱柱ABCD-A1B1C1D1中,AB=3,BB1=4.長為1的線段PQ在棱AA1上移動,
長為3的線段MN在棱CC1上移動,點R在棱BB1上移動,則四棱錐R-PQMN的體積是( )

A.6
B.10
C.12
D.不確定
【答案】分析:先求出底面PQMN的面積,再求R到底面PQMN的距離,然后求四棱錐R-PQMN的體積.
解答:解:由題意可知底面PQMN的面積是
R到PQMN的距離為
四棱錐R-PQMN的體積是:
故選A.
點評:本題考查棱柱、棱錐、棱臺的體積,考查計算能力,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N為棱AB中點.
(1)求證:AC1∥平面CNB1;
(2)求四棱錐C1-ANB1A1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆安徽省高二上學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分12分)如圖是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N為棱AB的中點.

(1)求證:AC1∥平面CNB1;

(2)求四棱錐C-ANB1A1的體積.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N為棱AB中點.
(1)求證:AC1∥平面CNB1
(2)求四棱錐C1-ANB1A1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安徽省期中題 題型:解答題

如圖是正三棱柱ABC﹣A1B1C1,AA1=3,AB=2,若N為棱AB中點.
(1)求證:AC1∥平面CNB1
(2)求四棱錐C1﹣ANB1A1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安徽省期中題 題型:解答題

如圖是正三棱柱ABC﹣A1B1C1,AA1=3,AB=2,若N為棱AB中點.
(1)求證:AC1∥平面CNB1;
(2)求四棱錐C1﹣ANB1A1的體積.

查看答案和解析>>

同步練習(xí)冊答案