如圖,橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率e=
5
5
,過F1的直線交橢圓于M、N兩點,且△MNF2的周長為4
5

(Ⅰ)求橢圓E的方程;
(Ⅱ)設AB是過橢圓E中心的任意弦,P是線段AB的垂直平分線與橢圓E的一個交點,求△APB面積的最小值.
(Ⅰ)∵△MNF2周長為4
5
,
∴4a=4
5
,
∴a=
5
,
∵離心率e=
5
5
,
∴c=1,
b=
a2-c2
=2,
∴橢圓E的方程為
x2
5
+
y2
4
=1
;
(Ⅱ)直線AB的方程為y=kx,線段AB的垂直平分線為y=-
1
k
x,
y=-
1
k
x與橢圓方程聯(lián)立,可得x=±
20k2
4k2+5
,
∴可得P(
20k2
4k2+5
,-
1
k
20k2
4k2+5
),
P到直線AB的距離為d=|
k2+1
k
20k2
4k2+5
|
y=kx與橢圓方程聯(lián)立,可得x=±
20
4+5k2

∴|AB|=
1+k2
•2
20
4+5k2

∴S△ABP=
1
2
|AB|d|=
1
2
1+k2
•2
20
4+5k2
•|
k2+1
k
20k2
4k2+5
|
令t=k2+1(t≥1),則S△ABP=20•
t2
(5t-1)(4t+1)
=20•
1
-(
1
t
-
1
2
)2+
81
4
,
∵t≥1,
∴t=1,即k=0時,△APB面積的最小值為2
5
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線的方程為5x2-4y2=20兩個焦點為F1,F(xiàn)2
(1)求此雙曲線的焦點坐標和漸近線方程;
(2)若橢圓與此雙曲線有共同的焦點,且有一公共點P滿足|PF1|•|PF2|=6,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
6
3
,過點A(0,-b)和B(a,0)的直線與原點的距離為
3
2

(1)求橢圓的方程.
(2)已知定點E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點.問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓的兩頂點為A(
2
,0)
,B(0,1),該橢圓的左右焦點分別是F1,F(xiàn)2
(1)在線段AB上是否存在點C,使得CF1⊥CF2?若存在,請求出點C的坐標;若不存在,請說明理由.
(2)設過F1的直線交橢圓于P,Q兩點,求△PQF2面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

曲線y=x2上的點到直線2x+y+4=0的最短距離是( 。
A.
5
5
B.
2
5
5
C.
3
5
5
D.
5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C:x2=2py過點P(1,
1
2
)
,直線l交C于A,B兩點,過點P且平行于y軸的直線分別與直線l和x軸相交于點M,N.
(1)求p的值;
(2)是否存在定點Q,當直線l過點Q時,△PAM與△PBN的面積相等?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某圓錐曲線有下列信息:
①曲線是軸對稱圖形,且兩坐標軸都是對稱軸;
②焦點在x軸上且焦點到坐標原點的距離為1;
③曲線與坐標軸的交點不是兩個;
④曲線過點A(1,
3
2
).
(1)判斷該圓錐曲線的類型并求曲線的方程;
(2)點F是改圓錐曲線的焦點,點F′是F關(guān)于坐標原點O的對稱點,點P為曲線上的動點,探求以|PF|以及|PF|•|PF′|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C:x2=2py(p>0)上一點A(m,4)到其焦點F的距離為
17
4

(1)求P與m的值;
(2)若直線l過焦點F交拋物線于P,Q兩點,且|PQ|=5,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,橢圓C上的點到左焦點F距離的最小值與最大值之積為1.
(1)求橢圓C的方程;
(2)直線l過橢圓C內(nèi)一點M(m,0),與橢圓C交于P、Q兩點.對給定的m值,若存在直線l及直線母x=-2上的點N,使得△PNQ的垂心恰為點F,求m的取值范圍.

查看答案和解析>>

同步練習冊答案