16.已知集合A={1,2,3},B={-2,-1,0,1,2},則A∩B=( 。
A.{1,2,3}B.{-2,-1,0,1,2}C.{1,2}D.{-2,-1}

分析 利用交集定義求解.

解答 解A={1,2,3},B={-2,-1,0,1,2},則A∩B={1,2}
故選:C.

點評 本題考查交集的求法,解題時要認(rèn)真審題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.過點(0,1)且與雙曲線x2-y2=1只有一個公共點的直線有4條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若2sinα+cosα=-$\sqrt{5}$,則tanα=( 。
A.$\frac{1}{2}$B.2C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知全集U=R,A={x|x2<16},B={x|y=log3(x-4)},則下列關(guān)系正確的是( 。
A.A∪B=RB.A∪(∁RB)=RC.A∩(∁RB)=RD.(∁RA)∪B=R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知角α的頂點與原點O重合,始邊與x軸的非負(fù)半軸重合,P(m,-2m)(m≠0)是角α終邊上的一點.則tan(α+$\frac{π}{4}$)的值為(  )
A.3B.$\frac{1}{3}$C.$-\frac{1}{3}$D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)函數(shù)f(x)=-|x|,g(x)=lg(ax2-4x+1),若對任意x1∈R,都存在x2∈R,使f(x1)=g(x2),則實數(shù)a的取值范圍為(-∞,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)f(x),g(x)是定義在同一區(qū)間[a,b]上的兩個函數(shù),若?x∈[a,b]都有|f(x)-g(x)|≤1成立,則稱f(x),g(x)在[a,b]上是“親密函數(shù)”,區(qū)間[a,b]稱為“親密區(qū)間”.若f(x)=x2+3x+2,g(x)=2x+1在[a,b]上是“親密函數(shù)”,則其“親密區(qū)間”是( 。
A.[0,2]B.[0,1]C.[1,2]D.[-1,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{|{lg|x|}|,x≠0}\\{1,x=0}\end{array}}$,若關(guān)于x的方程f2(x)+af(x)+b=0有9個不同的實數(shù)根.   
(1)求a+b的值;    
(2)求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,PA⊥面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD中點.

(1)證明:CD⊥平面PAE;
(2)若直線PB與平面ABCD所成角為45°,求二面角A-PD-C的余弦值.

查看答案和解析>>

同步練習(xí)冊答案