(本小題滿分12分)如圖,四邊形為矩形,平面ABE
 上的點,且,
  
(1)求證:平面
(2)求證:平面;
(3)求三棱錐的體積.
(1)證明:∵平面,
平面,∴.              ……2分
又 ∵平面, ∴,
,∴   …………………………4分
(2)證明:連結 ,∵平面, ∴
, ∴的中點;∵ 矩形中, 中點,
.         …… ………………………………………7分
, ∴平面. ……8分
(3)解:取中點,連結,∵,∴
平面,∴  ∴  ……10分
平面,∴,∴ 
,故三棱錐的體積為:
          …12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
圖為一簡單組合體,其底面ABCD為正方形,平面,,

(1)求證://平面;
(2)若N為線段的中點,求證:平面;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
三棱錐中,,

(1) 求證:面
(2) 求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分)如圖,已知都是邊長為的等邊三角形,且平面平面,過點平面,且
(1)求證:平面;
(2)求直線與平面所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(滿分15分)本題有2小題,第1小題6分,第2小題9分.
如圖,在直角梯形中,,,.將(及其內部)繞所在的直線旋轉一周,形成一個幾何體.
(1)求該幾何體的體積;
(2)設直角梯形繞底邊所在的直線旋轉角)至,問:是否存在,使得.若存在,求角的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)在棱長為的正方體中,是線段的中點,.
(Ⅰ) 求證:^;(Ⅱ) 求證:∥平面;(Ⅲ) 求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,在等腰直角中,,,,為垂足.沿對折,連結,使得
(1)對折后,在線段上是否存在點,使?若存在,求出的長;若不存在,說明理由; 
(2)對折后,求二面角的平面角的正切值.

C

 

              

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,平面PCBM⊥平面ABC,∠PCB=90°,PM∥BC,直線AM與直線PC所成的角為60°,又AC=1,BC=2PM=2,∠ACB="90° "

(1)求證:AC⊥BM;
(2)求二面角M-AB-C的余弦值
(3求P到平面MAB的距離

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設直線的方向向量是,平面的法向量是,則下列推理中
           ②
           ④
中正確的命題序號是              

查看答案和解析>>

同步練習冊答案