【題目】已知函數(shù),,恒成立時(shí)的范圍是(  )

A. B. C. D.

【答案】B

【解析】

利用條件f(1)<0,得到0<a<1.fx)在R上單調(diào)遞減,從而將fx2+tx)<fx﹣4)轉(zhuǎn)化為x2+txx﹣4,研究二次函數(shù)得解.

f(﹣x)=axax=﹣fx),

fx)是定義域?yàn)?/span>R的奇函數(shù),

fx)=axaxa>0a≠1),且f(1)<0,

,又∵a>0,且a≠1,

∴0<a<1.

ax單調(diào)遞減,ax單調(diào)遞增,

fx)在R上單調(diào)遞減.

不等式fx2+tx)+f(4﹣x)<0化為:fx2+tx)<fx﹣4),

x2+txx﹣4,即x2+(t﹣1)x+4>0恒成立,

∴△=(t﹣1)2﹣16<0,解得:﹣3<t<5.

故答案為:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)fx)是定義在R上的偶函數(shù),且滿足f(2)=1,fx+4)=2fx)+f(1),則f(3)=______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列4個(gè)判斷:

①若fx)=x2-2ax[1,+∞)上增函數(shù),則a=1;

②函數(shù)fx)=2x-x2只有兩個(gè)零點(diǎn);③函數(shù)y=2|x|的最小值是1;

④在同一坐標(biāo)系中函數(shù)y=2xy=2-x的圖象關(guān)于y軸對(duì)稱(chēng).

其中正確命題的序號(hào)是(  )

A. ①② B. ②③ C. ③④ D. ①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1過(guò)點(diǎn)A(2,0),B(0,1)兩點(diǎn).
(1)求橢圓C的方程及離心率;
(2)設(shè)P為第三象限內(nèi)一點(diǎn)且在橢圓C上,直線PA與y軸交于點(diǎn)M,直線PB與x軸交于點(diǎn)N,求證:四邊形ABNM的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為激勵(lì)創(chuàng)新,計(jì)劃逐年加大研發(fā)資金投入.若該公司2015年全年投入研發(fā)資金130萬(wàn)元,在此基礎(chǔ)上,每年投入的研發(fā)資金比上一年增長(zhǎng)12%,則該公司全年投入的研發(fā)資金開(kāi)始超過(guò)200萬(wàn)元的年份是( 。
(參考數(shù)據(jù):lg1.12=0.05,lg1.3=0.11,lg2=0.30)
A.2018年
B.2019年
C.2020年
D.2021年

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,當(dāng)P(x,y)不是原點(diǎn)時(shí),定義P的“伴隨點(diǎn)”為P′( , ),當(dāng)P是原點(diǎn)時(shí),定義“伴隨點(diǎn)”為它自身,現(xiàn)有下列命題:
①若點(diǎn)A的“伴隨點(diǎn)”是點(diǎn)A′,則點(diǎn)A′的“伴隨點(diǎn)”是點(diǎn)A.
②單元圓上的“伴隨點(diǎn)”還在單位圓上.
③若兩點(diǎn)關(guān)于x軸對(duì)稱(chēng),則他們的“伴隨點(diǎn)”關(guān)于y軸對(duì)稱(chēng)
④若三點(diǎn)在同一條直線上,則他們的“伴隨點(diǎn)”一定共線.
其中的真命題是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=xln x,g(x)=x3+ax2-x+2(a∈R).

(1)如果函數(shù)g(x)的單調(diào)遞減區(qū)間為,求函數(shù)g(x)的解析式;

(2)若不等式2f(x)≤+2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=,其中c為常數(shù),且函數(shù)fx)的圖象過(guò)原點(diǎn).

(1)求c的值,并求證:f)+fx)=1;

(2)判斷函數(shù)fx)在(-1,+∞)上的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中

)若,求函數(shù)的單調(diào)遞減區(qū)間.

)求函數(shù)的極值.

)若函數(shù)在區(qū)間上恰有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案