分析 (1)利用三角恒等變換化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)的周期性求得ω的值,可得函數(shù)的解析式.
(2)利用正弦函數(shù)的單調(diào)性求得函數(shù)f(x)的單調(diào)遞增區(qū)間.
解答 解:(1)函數(shù)f(x)=2cos2ωx+2sinωxcosωx=cos2ωx+sin2ωx+1=$\sqrt{2}$sin(2ωx+$\frac{π}{4}$)+1,
因?yàn)閒(x)最小正周期為π,所以$\frac{2π}{2ω}$=π,解得ω=1,
所以f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1,
f($\frac{π}{3}$)=$\sqrt{2}$sin($\frac{2π}{3}$+$\frac{π}{4}$)+1=$\sqrt{2}$(sin$\frac{2π}{3}$cos$\frac{π}{4}$+cos$\frac{2π}{3}$sin$\frac{π}{4}$)+1=$\frac{\sqrt{3}+1}{2}$.
(2)由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,可得 kπ-$\frac{3π}{8}$≤x≤kπ+$\frac{π}{8}$,
所以,函數(shù)f(x)的單調(diào)遞增區(qū)間為[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈Z.
點(diǎn)評(píng) 本題主要考查三角恒等變換,正弦函數(shù)的周期性、單調(diào)性,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 簡(jiǎn)單隨機(jī)抽樣 | B. | 系統(tǒng)抽樣 | C. | 分層抽樣 | D. | 抽簽法 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {3} | B. | {1,3} | C. | {0,1,3} | D. | {-1,0,1,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com