【題目】已知A、B、C為△ABC的三個內(nèi)角,且其對邊分別為a、b、c,若cosBcosC﹣sinBsinC=
(1)求角A;
(2)若a=2 ,b+c=4,求△ABC的面積.

【答案】
(1)解:在△ABC中,∵cosBcosC﹣sinBsinC= ,

∴cos(B+C)= ,

又∵0<B+C<π,

∴B+C= ,

∵A+B+C=π,

∴A=


(2)解:由余弦定理a2=b2+c2﹣2bccosA,

得(2 2=(b+c)2﹣2bc﹣2bccos

把b+c=4代入得:12=16﹣2bc+bc,

整理得:bc=4,

則△ABC的面積S= bcsinA= ×4× =


【解析】(1)已知等式左邊利用兩角和與差的余弦函數(shù)公式化簡,求出cos(B+C)的值,確定出B+C的度數(shù),即可求出A的度數(shù);(2)利用余弦定理列出關(guān)系式,再利用完全平方公式變形,將a與b+c的值代入求出bc的值,再由sinA的值,利用三角形面積公式即可求出三角形ABC面積.
【考點精析】本題主要考查了正弦定理的定義和余弦定理的定義的相關(guān)知識點,需要掌握正弦定理:;余弦定理:;;才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x>0,y>0,且2x+8y﹣xy=0,求:
(1)xy的最小值;
(2)x+y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R上的增函數(shù),且對于任意的x都有f(﹣x)+f(x)=0恒成立,如果實數(shù)a,b滿足不等式組 ,那么a2+b2的取值范圍是(
A.[9,49]
B.(17,49]
C.[9,41]
D.(17,41]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(sinA,cosA), =(cosB,sinB), =sin2C且A、B、C分別為△ABC的三邊a,b,c所對的角.
(1)求角C的大小;
(2)若sinA,sinC,sinB成等比數(shù)列,且 =18,求c的值..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}中,已知對任意n∈N* , a1+a2+a3+…+an=3n﹣1,則a12+a22+a32+…+an2等于( )
A.(3n﹣1)2
B.
C.9n﹣1
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)若 ,求曲線 在點 處的切線方程;

(2)若 處取得極小值,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知p:函數(shù)f(x)=lg(ax2﹣x+ a)的定義域為R;q:a≥1.如果命題“p∨q為真,p∧q為假”,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某早餐店每天制作甲、乙兩種口味的糕點共n(nN*)份,每份糕點的成本1元,售價2元,如果當(dāng)天賣不完,剩下的糕點作廢品處理.該早餐店發(fā)現(xiàn)這兩種糕點每天都有剩余,為此整理了過往100天這兩種糕點的日銷量(單位:份),得到如下的統(tǒng)計數(shù)據(jù):

甲口味糕點日銷量

48

49

50

51

天數(shù)

20

40

20

20

乙口味糕點日銷量

48

49

50

51

天數(shù)

40

30

20

10

以這100天記錄的各銷量的頻率作為各銷量的概率,假設(shè)這兩種糕點的日銷量相互獨立.

(1)記該店這兩種糕點每日的總銷量為X份,求X的分布列

(2)早餐店為了減少浪費,提升利潤,決定調(diào)整每天制作糕點的份數(shù)

①若產(chǎn)生浪費的概率不超過0.6,求n的最大值;

②以銷售這兩種糕點的日總利潤的期望值為決策依據(jù),在每天所制糕點能全部賣完與n=98之中選其一,應(yīng)選哪個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的左頂點,且點在橢圓上, 分別是橢圓的左、右焦點。過點作斜率為的直線交橢圓于另一點,直線交橢圓于點.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若為等腰三角形,求點的坐標(biāo);

3)若,求的值.

查看答案和解析>>

同步練習(xí)冊答案