【題目】已知函數(shù)(其中).
(1)當(dāng)時(shí),若函數(shù)在上單調(diào)遞減,求的取值范圍;
(2)當(dāng),時(shí),
①求函數(shù)的極值;
②設(shè)函數(shù)圖象上任意一點(diǎn)處的切線為,求在軸上的截距的取值范圍.
【答案】(1);(2)①見(jiàn)解析,②
【解析】
(1)當(dāng)時(shí),求出導(dǎo)數(shù),分離參數(shù),求出即可;
(2)①時(shí),對(duì)進(jìn)行討論,根據(jù)的導(dǎo)數(shù)判斷吶喊聲的單調(diào)性和極值得出結(jié)論;
②設(shè)切點(diǎn)為,則曲線在點(diǎn)處的切線方程為,當(dāng)時(shí),切線沒(méi)有截距,否則表示出截距,結(jié)合基本不等式求出截距的范圍.
(1)時(shí), 的導(dǎo)函數(shù),
∴由題意知對(duì)任意有,即
∴,即.
(2)時(shí), 的導(dǎo)函數(shù),
①(i)當(dāng)時(shí),有;,
∴函數(shù)在單調(diào)遞增,單調(diào)遞減,
∴函數(shù)在取得極大值,沒(méi)有極小值.
(ii)當(dāng)時(shí),有;,
∴函數(shù)在單調(diào)遞減,單調(diào)遞增,
∴函數(shù)在取得極小值,沒(méi)有極大值.
綜上可知: 當(dāng)時(shí),函數(shù)在取得極大值,沒(méi)有極小值;
當(dāng)時(shí),函數(shù)在取得極小值,沒(méi)有極大值.
②設(shè)切點(diǎn)為,則曲線在點(diǎn)處的切線方程為,
當(dāng)時(shí),切線的方程為,其在軸上的截距不存在.
當(dāng)時(shí),
∴令,得切線在軸上的截距為
∴當(dāng)時(shí),
,
當(dāng)時(shí),,
∴當(dāng)切線在軸上的截距范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列,其中.
(1)若滿足.
①當(dāng),且時(shí),求的值;
②若存在互不相等的正整數(shù),滿足,且成等差數(shù)列,求的值.
(2)設(shè)數(shù)列的前項(xiàng)和為,數(shù)列的前n項(xiàng)和為,,,若,,且恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),為的導(dǎo)函數(shù).
(1)求證:在上存在唯一零點(diǎn);
(2)求證:有且僅有兩個(gè)不同的零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知向量,,且.記動(dòng)點(diǎn)的軌跡為.
(1)求的方程;
(2)已知直線過(guò)坐標(biāo)原點(diǎn),且與(1)中的軌跡交于兩點(diǎn),在第三象限,且軸,垂足為,連接并延長(zhǎng)交于點(diǎn),求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓,點(diǎn)是它的右端點(diǎn),弦過(guò)橢圓的中心,,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)、為圓上不重合的兩點(diǎn),的平分線總是垂直于軸,且存在實(shí)數(shù),使得,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓C的中心在坐標(biāo)原點(diǎn)O,其右焦點(diǎn)為,且點(diǎn)在橢圓C上.
求橢圓C的方程;
設(shè)橢圓的左、右頂點(diǎn)分別為A、B,M是橢圓上異于A,B的任意一點(diǎn),直線MF交橢圓C于另一點(diǎn)N,直線MB交直線于Q點(diǎn),求證:A,N,Q三點(diǎn)在同一條直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),函數(shù),其中,是的一個(gè)極值點(diǎn),且.
(1)討論的單調(diào)性
(2)求實(shí)數(shù)和a的值
(3)證明
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列的公差不為零,且,、、成等比數(shù)列,數(shù)列滿足
(1)求數(shù)列、的通項(xiàng)公式;
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某銷(xiāo)售公司在當(dāng)?shù)?/span>、兩家超市各有一個(gè)銷(xiāo)售點(diǎn),每日從同一家食品廠一次性購(gòu)進(jìn)一種食品,每件200元,統(tǒng)一零售價(jià)每件300元,兩家超市之間調(diào)配食品不計(jì)費(fèi)用,若進(jìn)貨不足食品廠以每件250元補(bǔ)貨,若銷(xiāo)售有剩余食品廠以每件150回收.現(xiàn)需決策每日購(gòu)進(jìn)食品數(shù)量,為此搜集并整理了、兩家超市往年同期各50天的該食品銷(xiāo)售記錄,得到如下數(shù)據(jù):
銷(xiāo)售件數(shù) | 8 | 9 | 10 | 11 |
頻數(shù) | 20 | 40 | 20 | 20 |
以這些數(shù)據(jù)的頻數(shù)代替兩家超市的食品銷(xiāo)售件數(shù)的概率,記表示這兩家超市每日共銷(xiāo)售食品件數(shù),表示銷(xiāo)售公司每日共需購(gòu)進(jìn)食品的件數(shù).
(1)求的分布列;
(2)以銷(xiāo)售食品利潤(rùn)的期望為決策依據(jù),在與之中選其一,應(yīng)選哪個(gè)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com