設(shè)是拋物線上相異兩點,到y(tǒng)軸的距離的積為

(1)求該拋物線的標(biāo)準(zhǔn)方程.
(2)過Q的直線與拋物線的另一交點為R,與軸交點為T,且Q為線段RT的中點,試求弦PR長度的最小值.

(1).(2)直線PQ垂直于x軸時|PR|取最小值.

解析試題分析:(1)確定拋物線的標(biāo)準(zhǔn)方程,關(guān)鍵是確定的值.利用,可得,
再根據(jù)P、Q在拋物線上,得到,集合已知條件得4p2=4,p=1.
(2)設(shè)直線PQ過點,且方程為,應(yīng)用聯(lián)立方程組
消去x得y2 2my 2a=0,利用韋達(dá)定理,建立的方程組,確定得到,利用“弦長公式”求解.
試題解析: (1)∵ ·=0,則x1x2+y1y2=0,             1分
又P、Q在拋物線上,故y12=2px1,y22=2px2,故得
+y1y2=0, y1y2= 4p2 
            3分
又|x1x2|=4,故得4p2=4,p=1.
所以拋物線的方程為:       5分
(2)設(shè)直線PQ過點E(a,0)且方程為x=my+a
聯(lián)立方程組
消去x得y2 2my 2a=0
∴      ①                 7分
設(shè)直線PR與x軸交于點M(b,0),則可設(shè)直線PR方程為x=ny+b,并設(shè)R(x3,y3),
同理可知  ②               9分
由①、②可得 
由題意,Q為線段RT的中點,∴ y3=2y2,∴b=2a
又由(Ⅰ)知, y1y2= 4,代入①,可得
2a= 4   ∴  a=2.故b=4.           11分

.
當(dāng)n=0,即直線PQ垂直于x軸時|PR|取最小值          14分
考點:拋物線標(biāo)準(zhǔn)方程,直線與拋物線的位置關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓,過點作圓的切線交橢圓于A,B兩點。
(1)求橢圓的焦點坐標(biāo)和離心率;
(2)求的取值范圍;
(3)將表示為的函數(shù),并求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某跳水運動員在一次跳水訓(xùn)練時的跳水曲線為如圖所示的拋物線一段,已知跳水板長為2m,跳水板距水面的高為3m,=5m,=6m,為安全和空中姿態(tài)優(yōu)美,訓(xùn)練時跳水曲線應(yīng)在離起跳點m()時達(dá)到距水面最大高度4m,規(guī)定:以為橫軸,為縱軸建立直角坐標(biāo)系.

(1)當(dāng)=1時,求跳水曲線所在的拋物線方程;
(2)若跳水運動員在區(qū)域內(nèi)入水時才能達(dá)到壓水花的訓(xùn)練要求,求達(dá)到壓水花的訓(xùn)練要求時的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知點,為動點,且直線與直線的斜率之積為.
(1)求動點的軌跡的方程;
(2)設(shè)過點的直線與曲線相交于不同的兩點.若點軸上,且,求點的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的左焦點為,離心率為,過點且與軸垂直的直線被橢圓截得的線段長為.
(1) 求橢圓方程.
(2) 過點的直線與橢圓交于不同的兩點,當(dāng)面積最大時,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切,直線與橢圓C相交于A、B兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的長軸長為4,且過點
(1)求橢圓的方程;
(2)設(shè)、、是橢圓上的三點,若,點為線段的中點,、兩點的坐標(biāo)分別為、,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓C:(a>b>0)的左、右焦點,直線:x=-將線段F1F2分成兩段,其長度之比為1 : 3.設(shè)A,B是C上的兩個動點,線段AB的中垂線與C交于P,Q兩點,線段AB的中點M在直線l上.

(Ⅰ) 求橢圓C的方程;
(Ⅱ) 求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知在直角坐標(biāo)系中,曲線的參數(shù)方程為:為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,直線的極坐標(biāo)方程為:
(Ⅰ)寫出曲線和直線在直角坐標(biāo)系下的方程;
(II)設(shè)點是曲線上的一個動點,求它到直線的距離的最小值.

查看答案和解析>>

同步練習(xí)冊答案