【題目】設(shè),為奇函數(shù).
(1)求的值;
(2)若對任意恒有成立,求實數(shù)的取值范圍.
【答案】(1);(2).
【解析】
(1)由求出實數(shù)的值,求出函數(shù)的解析式,然后利用奇偶性的定義驗證函數(shù)為奇函數(shù);
(2)分析出函數(shù)為增函數(shù),結(jié)合奇函數(shù)的性質(zhì),由得出,由單調(diào)性得出對任意的恒成立,構(gòu)造函數(shù),對該二次函數(shù)的對稱軸與區(qū)間的位置關(guān)系進行分類討論,分析函數(shù)在區(qū)間上的單調(diào)性,得出最小值,然后解不等式可得出實數(shù)的取值范圍.
(1)因為函數(shù)為奇函數(shù),且定義域為,故,所以.
故,所以,此時,,定義域為,關(guān)于原點對稱.
,則函數(shù)為奇函數(shù);
(2)由(1)得,
則函數(shù)在上為減函數(shù),由于函數(shù)為奇函數(shù),
由,可得,則有.
,則該不等式對任意的恒成立,
構(gòu)造函數(shù),其中,則.
二次函數(shù)的圖象開口向上,對稱軸為直線,下面分三種情況討論:
①當(dāng)時,即時,函數(shù)在上單調(diào)遞增,
則函數(shù)的最小值為恒成立,,此時;
②當(dāng)時,即時,函數(shù)在上單調(diào)遞減,
則函數(shù)的最小值為,解得,此時;
③當(dāng)時,即時,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,則函數(shù)的最小值為,整理得,
解得,此時.
綜上所述,實數(shù)的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線的極坐標(biāo)方程.以極點為原點,極軸為軸非負(fù)半軸建立平面直角坐標(biāo)系,且在兩坐標(biāo)系中取相同的長度單位,直線的參數(shù)方程為(為參數(shù)).
(1)寫出曲線的參數(shù)方程和直線的普通方程;
(2)過曲線上任意一點作與直線相交的直線,該直線與直線所成的銳角為,設(shè)交點為,求的最大值和最小值,并求出取得最大值和最小值時點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線過點,圓,直線與圓交于不同兩點.
(Ⅰ)求直線的斜率的取值范圍;
(Ⅱ)是否存在過點且垂直平分弦的直線?若存在,求直線斜率的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:經(jīng)過點(,),且兩個焦點,的坐標(biāo)依次為(1,0)和(1,0).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè),是橢圓上的兩個動點,為坐標(biāo)原點,直線的斜率為,直線的斜率為,求當(dāng)為何值時,直線與以原點為圓心的定圓相切,并寫出此定圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,霧霾日趨嚴(yán)重,霧霾的工作、生活受到了嚴(yán)重的影響,如何改善空氣質(zhì)量已成為當(dāng)今的熱點問題,某空氣凈化器制造廠,決定投入生產(chǎn)某型號的空氣凈化器,根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律,每生產(chǎn)該型號空氣凈化器(百臺),其總成本為(萬元),其中固定成本為12萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為10萬元(總成本=固定成本+生產(chǎn)成本),銷售收入(萬元)滿足,假定該產(chǎn)品銷售平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(1)求利潤函數(shù)的解析式(利潤=銷售收入-總成本);
(2)工廠生產(chǎn)多少百臺產(chǎn)品時,可使利潤最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四位同學(xué)參加比賽,只有其中三位獲獎.甲說:“乙或丙未獲獎”;乙說:“甲、丙都獲獎”;丙說:“我未獲獎”;丁說:“乙獲獎”.四位同學(xué)的話恰有兩句是對的,則( )
A. 甲和乙不可能同時獲獎 B. 丙和丁不可能同時獲獎
C. 乙和丁不可能同時獲獎 D. 丁和甲不可能同時獲獎
【答案】C
【解析】若甲乙丙同時獲獎,則甲丙的話錯,乙丁的話對;符合題意;
若甲乙丁同時獲獎,則乙的話錯,甲丙丁的話對;不合題意;
若甲丙丁同時獲獎,則丙丁的話錯,甲乙的話對;符合題意;;
若丙乙丁同時獲獎,則甲乙丙的話錯,丁的話對;不合題意;
因此乙和丁不可能同時獲獎,選C.
【題型】單選題
【結(jié)束】
12
【題目】已知當(dāng)時,關(guān)于的方程有唯一實數(shù)解,則值所在的范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域為,當(dāng)時,,且對任意的實數(shù),等式恒成立,若數(shù)列滿足,且,則的值為( )
A.4037B.4038C.4027D.4028
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某鎮(zhèn)在政府“精準(zhǔn)扶貧”的政策指引下,充分利用自身資源,大力發(fā)展養(yǎng)殖業(yè),以增加收入,政府計劃共投入72萬元,全部用于甲、乙兩個合作社,每個合作社至少要投入15萬元,其中甲合作社養(yǎng)魚,乙合作社養(yǎng)雞,在對市場進行調(diào)研分析發(fā)現(xiàn)養(yǎng)魚的收益M、養(yǎng)雞的收益N與投入a(單位:萬元)滿足,N=a+20.設(shè)甲合作社的投入為x(單位:萬元),兩個合作社的總收益為f(x)(單位:萬元).
(1)當(dāng)甲合作社的投入為25萬元時,求兩個合作社的總收益;
(2)試問如何安排甲、乙兩個合作社的投入,才能使總收益最大,最大總收益為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的導(dǎo)函數(shù)零點的個數(shù);
(2)若函數(shù)的最小值為,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com