【題目】有以下四個命題:
(1)2n>2n+1(n≥3);
(2)2+4+6+…+2n=n2+n+2(n≥1);
(3)凸n邊形內角和為f(n)=(n-1)π(n≥3);
(4)凸n邊形對角線條數(shù)f(n)= (n≥4).
其中滿足“假設n=k(k∈N,k≥n0)時命題成立,則當n=k+1時命題也成立”.但不滿足“當n=n0(n0是題中給定的n的初始值)時命題成立”的命題序號是________.
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在(0,+∞)上的增函數(shù),且滿足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(8)的值;
(2)求不等式f(x)-f(x-2)>3的解集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司即將推車一款新型智能手機,為了更好地對產品進行宣傳,需預估市民購買該款手機是否與年齡有關,現(xiàn)隨機抽取了50名市民進行購買意愿的問卷調查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強,調查結果用莖葉圖表示如圖所示.
(1)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷是否有95%的把握認為市民是否購買該款手機與年齡有關?
購買意愿強 | 購買意愿弱 | 合計 | |
20~40歲 | |||
大于40歲 | |||
合計 |
(2)從購買意愿弱的市民中按年齡進行分層抽樣,共抽取5人,從這5人中隨機抽取2人進行采訪,求這2人都是年齡大于40歲的概率.
附:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,N為PC的中點.
(1)證明MN∥平面PAB;
(2)求四面體N﹣BCM的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線關于軸對稱,頂點在坐標原點,直線經過拋物線的焦點.
(1)求拋物線的標準方程;
(2)若不經過坐標原點的直線與拋物線相交于不同的兩點, ,且滿足,證明直線過軸上一定點,并求出點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知的展開式中,前三項系數(shù)的絕對值依次成等差數(shù)列.
(1)求展開式中的常數(shù)項;
(2)求展開式中所有整式項.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學在研究函數(shù)f(x)=(x∈R)時,分別給出下面幾個結論:
①等式f(-x)=-f(x)在x∈R時恒成立;
②函數(shù)f(x)的值域為(-1,1);
③若x1≠x2,則一定有f(x1)≠f(x2);
④方程f(x)=x在R上有三個根.
其中正確結論的序號有______.(請將你認為正確的結論的序號都填上)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com