已知函數(shù)f(x)=
x3+x2(x<1)
alnx(x≤1)

(Ⅰ)求f(x)在[-1,e](e為自然對數(shù)的底數(shù))上的最大值;
(Ⅱ)對任意給定的正實數(shù)a,曲線y=f(x)上是否存在兩點P,Q,使得△POQ是以O為直角頂點的直角三角形,且此三角形斜邊中點在y軸上?
分析:(I)由 f(x)=
-x3+x2,x<1
alnx,x≥1
知,當-1≤x<1時,f′(x)=-3x2+2x=-3x(x-
2
3
)
,令f'(x)=0得 x=0或x=
2
3
,當x變化時,f'(x),f(x)的變化情況列表知f(x)在[-1,1)上的最大值為2.當1≤x≤2時,f(x)=alnx.當a≤0時,f(x)≤0,f(x)最大值為0;當a>0時,f(x)在[1,e]上單調遞增.當a≤2時,f(x)在區(qū)間[-1,e]上的最大值為2;當a>2時,f(x)在區(qū)間[-1,e]上的最大值為a.
(II)假設曲線y=f(x)上存在兩點P、Q滿足題設要求,則點P、Q只能在y軸兩側.設P(t,f(t))(t>0),則Q(-t,t3+t2),顯然t≠1.由此入手能得到對任意給定的正實數(shù)a,曲線y=f(x)上存在兩點P、Q,使得△POQ是以O為直角頂點的直角三角形,且此三角形斜邊中點在y軸上.
解答:解:(Ⅰ)因為f(x)=f(x)=
x3+x2(x<1)
alnx(x≤1)

1當-1≤x<1時,f′(x)=-x(3x-2),
解f′(x)>0得0<x<
2
3
:解f′(x)<0得-1<x<0或
2
3
<x<1
∴f(x)在(-1,0)和(
2
3
,1)上單減,在(0,
2
3
)上單增,
從而f(x)在x=
2
3
處取得極大值f
2
3
)=
4
27

又∵f(-1)=2,f(1)=0,
∴f(x)在[-1,1)上的最大值為2.
當1≤x≤e時,f(x)=alnx,
當a≤0時,f(x)≤0;
當a>0時,f(x)在[1,e]單調遞增;
∴f(x)在[1,e]上的最大值為a.
∴當a≥2時,f(x)在[-1,e]上的最大值為a;
當a<2時,f(x)在[-1,e]上的最大值為2.
(Ⅱ)假設曲線y=f(x)上存在兩點P,Q滿足題意,則P,Q只能在y軸兩側,不妨設P(t,f(t))(t>0),則Q(-t,t3+t2),且t≠1
∵△POQ是以O為直角頂點的直角三角形
OP
OQ
=0,即-t2+f(t)(t3+t2)=0(*)
是否存在P,Q等價于方程(*)是否有解.
①若0<t<1,則f(x)=-t3+t2,代入方程(*)得:-t2+(-t3+t2)(t3+t2)=0,
即:t4-t2+1=0,而此方程無實數(shù)解,
②當t>1時,
∴f(t)=alnt,代入方程(*)得:-t2+alnt•(t3+t2)=0,
即:
1
a
=(t+1)lnt

設h(x)=(x+1)lnx(x≥1),則h′(x)=lnx+
1
x
+1>0在[1,+∞)恒成立.
∴h(x)在[1,+∞)上單調遞增,從而h(x)≥h(1)=0,則h(x)的值域為[0,+∞).
∴當a>0時,方
1
a
=(t+1)lnt有解,即方程(*)有解.
∴對任意給定的正實數(shù)a,曲線y=f(x)上總存在兩點P,Q,使得△POQ是以O為直角頂點的直角三角形,且此三角形斜邊中點在y軸上.
點評:本題考查導數(shù)的性質和應用,解題時要認真審題,注意挖掘題設中的隱含條件.解答關鍵是利用導數(shù)求閉區(qū)間上函數(shù)的最值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x-2m2+m+3(m∈Z)為偶函數(shù),且f(3)<f(5).
(1)求m的值,并確定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在實數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,請求出a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:浙江省東陽中學高三10月階段性考試數(shù)學理科試題 題型:022

已知函數(shù)f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數(shù)”,則k的值是_________.

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年河南省許昌市長葛三高高三第七次考試數(shù)學試卷(理科)(解析版) 題型:選擇題

已知函數(shù)f(x)、g(x),下列說法正確的是( )
A.f(x)是奇函數(shù),g(x)是奇函數(shù),則f(x)+g(x)是奇函數(shù)
B.f(x)是偶函數(shù),g(x)是偶函數(shù),則f(x)+g(x)是偶函數(shù)
C.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)一定是奇函數(shù)或偶函數(shù)
D.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)可以是奇函數(shù)或偶函數(shù)

查看答案和解析>>

同步練習冊答案