(本小題滿分14分) 已知在單位圓x²+y²=1上任取一點M,作MN⊥x軸,垂足為N, = 2.
(Ⅰ)求動點Q的軌跡的方程;
(Ⅱ)設(shè)點,點為曲線上任一點,求點到點距離的最大值;
(Ⅲ)在的條件下,設(shè)△的面積為(是坐標(biāo)原點,是曲線上橫坐標(biāo)為的點),以為邊長的正方形的面積為.若正數(shù)滿足,問是否存在最小值,若存在,請求出此最小值,若不存在,請說明理由.
(1)
(2)時,;
時,;
時,,.所以,
(3)
解析試題分析:解:(Ⅰ)設(shè)點Q的坐標(biāo)為(x,y),M(x0,y0),則N(x0,0)
∴
∵=
∴
∵ ∴
∵點M(x0,y0)在單位圓x2 + y2 = 1上
∴
所以動點Q的軌跡C的方程為 .........................4分
(Ⅱ)設(shè),則
,令,,所以,
當(dāng),即時在上是減函數(shù),;
當(dāng),即時,在上是增函數(shù),在上是減函數(shù),則;
當(dāng),即時,在上是增函數(shù),.
所以, . 9分
(Ⅲ)當(dāng)時,,于是,,
若正數(shù)滿足條件,則,即,
,令,設(shè),則,,于是
,
所以,當(dāng),即時,,
即,.所以,存在最小值. 14分
考點:軌跡方程的求解以及點到直線距離
點評:解決的關(guān)鍵是利用向量法坐標(biāo)法得到軌跡方程,同時能利用點到直線的距離得到最值,屬于基礎(chǔ)題。
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點,當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進(jìn)行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com