【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸的非負半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為

1)求圓的圓心到直線的距離;

2)己知,若直線與圓交于兩點,求的值.

【答案】12

【解析】

1)將直線的參數(shù)方程轉(zhuǎn)化為普通方程,將圓的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程,并求得圓心坐標(biāo),利用點到直線的距離公式求得圓圓心到直線的距離.

2)設(shè)出直線的參數(shù)方程,代入圓的方程,寫出韋達定理,根據(jù)直線參數(shù)方程參數(shù)的幾何意義,求得的值.

1)由直線的參數(shù)方程為為參數(shù)),消去參數(shù),可得.

的極坐標(biāo)方程為,即,

∴圓的普通坐標(biāo)方程為,則圓心

∴圓心,到直線的距離

2)已知,點在直線上,直線與圓交于兩點,將為參數(shù))代入圓的普通坐標(biāo)方程,得

設(shè),對應(yīng)參數(shù)為,則,

,∴是同為負號.

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某理財公司有兩種理財產(chǎn)品,這兩種理財產(chǎn)品一年后盈虧的情況如下(每種理財產(chǎn)品的不同投資結(jié)果之間相互獨立):

產(chǎn)品

投資結(jié)果

獲利20%

獲利10%

不賠不賺

虧損10%

概率

0.2

0.3

0.2

0.3

產(chǎn)品(其中

投資結(jié)果

獲利30%

不賠不賺

虧損20%

概率

0.1

(1)已知甲、乙兩人分別選擇了產(chǎn)品和產(chǎn)品進行投資,如果一年后他們中至少有一人獲利的概率大于0.7,求的取值范圍;

(2)丙要將家中閑置的10萬元錢進行投資,以一年后投資收益的期望值為決策依據(jù),在產(chǎn)品和產(chǎn)品之中選其一,應(yīng)選用哪種產(chǎn)品?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著經(jīng)濟全球化信息化的發(fā)展,企業(yè)之間的競爭從資源的爭奪轉(zhuǎn)向人才的競爭.吸引留住培養(yǎng)和用好人才成為人力資源管理的戰(zhàn)略目標(biāo)和緊迫任務(wù).在此背景下,某信息網(wǎng)站在15個城市中對剛畢業(yè)的大學(xué)生的月平均收入薪資和月平均期望薪資做了調(diào)查,數(shù)據(jù)如下圖所示.

(1)若某大學(xué)畢業(yè)生從這15座城市中隨機選擇一座城市就業(yè),求該生選中月平均收入薪資高于8500元的城市的概率;

(2)若從月平均收入薪資與月平均期望薪資之差高于1000元的城市中隨機選擇2座城市,求這2座城市的月平均期望薪資都低于8500元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

直線的參數(shù)方程為(其中為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(其中).

(1)的直角坐標(biāo)為(2,2),且點在曲線內(nèi),求實數(shù)m的取值范圍;

(2),當(dāng)變化時,求直線被曲線截得的弦長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若不等式為自然對數(shù)的底數(shù))對成立,則實數(shù)的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近日,據(jù)《三秦都市報》消息稱陜西新高考方案初稿已經(jīng)形成,新高考從2019年秋季入學(xué)的新高一學(xué)生開始執(zhí)行“3+3”模式,即除語文、數(shù)學(xué)、外語三科為必考科目外,還要在物理、化學(xué)、生物、歷史、地理、政治六科中選擇三科作為選考科目.已知某生的高考志愿定為北京大學(xué)環(huán)境科學(xué)專業(yè),按照2018年北大高考招生選考科目要求物理、化學(xué)必選,為該生安排課表(上午四節(jié)、下午四節(jié),每門課每天至少一節(jié)課),現(xiàn)該生某天最后兩節(jié)為自習(xí)課,且數(shù)學(xué)不排下午第一節(jié),語文、外語不相鄰(上午第四節(jié)和下午第一節(jié)不算相鄰),則該生該天課表不同的排法有________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某幾何體的三視圖如圖所示,網(wǎng)格紙上的小正方形邊長為1,則此幾何體的外接球的表面積為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以為極點,軸的正半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為,曲線的參數(shù)方程為為參數(shù)).

1)寫出直線及曲線的直角坐標(biāo)方程;

2)過點且平行于直線的直線與曲線交于,兩點,若,求點的軌跡及其直角坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊答案