【題目】已知函數(shù),.
(1)當(dāng)為何值時(shí),直線是曲線的切線;
(2)若不等式在上恒成立,求的取值范圍.
【答案】(1) .(2) .
【解析】
(1)先令,求其導(dǎo)數(shù),設(shè)切點(diǎn)為,由直線是曲線的切線,得到,用導(dǎo)數(shù)的方法研究函數(shù)的單調(diào)性,即可求出結(jié)果;
(2)先令,對(duì)其求導(dǎo),分別討論和兩種情況,結(jié)合題意,即可得到結(jié)果.
(1)令,,
設(shè)切點(diǎn)為,則,,則.
令,,則函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,且,所以.
(2)令,則,
①當(dāng)時(shí),,所以函數(shù)在上單調(diào)遞減,
所以,所以滿足題意.
②當(dāng)時(shí),令,得,
所以當(dāng)時(shí), ,當(dāng)時(shí),.
所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.
(。┊(dāng),即時(shí),在上單調(diào)遞增,
所以,所以,此時(shí)無解.
(ⅱ)當(dāng),即時(shí),函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.
所以 .
設(shè) ,則,
所以在上單調(diào)遞增,
,不滿足題意.
(ⅲ)當(dāng),即時(shí),在上單調(diào)遞減,
所以,所以 滿足題意.
綜上所述:的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)的某種產(chǎn)品,如果年返修率不超過千分之一,則其生產(chǎn)部門當(dāng)年考核優(yōu)秀,現(xiàn)獲得該公司2014-2018年的相關(guān)數(shù)據(jù)如下表所示:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年生產(chǎn)臺(tái)數(shù)(萬臺(tái)) | 2 | 4 | 5 | 6 | 8 |
該產(chǎn)品的年利潤(rùn)(百萬元) | 30 | 40 | 60 | 50 | 70 |
年返修臺(tái)數(shù)(臺(tái)) | 19 | 58 | 45 | 71 | 70 |
注:
(1)從該公司2014-2018年的相關(guān)數(shù)據(jù)中任意選取3年的數(shù)據(jù),求這3年中至少有2年生產(chǎn)部門考核優(yōu)秀的概率.
(2)利用上表中五年的數(shù)據(jù)求出年利潤(rùn)(百萬元)關(guān)于年生產(chǎn)臺(tái)數(shù)(萬臺(tái))的回歸直線方程是 ①.現(xiàn)該公司計(jì)劃從2019年開始轉(zhuǎn)型,并決定2019年只生產(chǎn)該產(chǎn)品1萬臺(tái),且預(yù)計(jì)2019年可獲利32(百萬元);但生產(chǎn)部門發(fā)現(xiàn),若用預(yù)計(jì)的2019年的數(shù)據(jù)與2014-2018年中考核優(yōu)秀年份的數(shù)據(jù)重新建立回歸方程,只有當(dāng)重新估算的,的值(精確到0.01),相對(duì)于①中,的值的誤差的絕對(duì)值都不超過時(shí),2019年該產(chǎn)品返修率才可低于千分之一.若生產(chǎn)部門希望2019年考核優(yōu)秀,能否同意2019年只生產(chǎn)該產(chǎn)品1萬臺(tái)?請(qǐng)說明理由.
(參考公式:, ,,相對(duì)的誤差為.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且過點(diǎn),若點(diǎn)在橢圓C上,則點(diǎn)稱為點(diǎn)M的一個(gè)“橢點(diǎn)”.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓C相交于A,B兩點(diǎn),且A,B兩點(diǎn)的“橢點(diǎn)”分別為P,Q,以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),試判斷的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn),是該橢圓的左、右焦點(diǎn),是上頂點(diǎn),且是等腰直角三角形.
(1)求的方程;
(2)已知是坐標(biāo)原點(diǎn),直線與橢圓相交于兩點(diǎn),點(diǎn)在上且滿足四邊形是一個(gè)平行四邊形,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是橢圓上的點(diǎn),是焦點(diǎn),離心率.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)是橢圓上的兩點(diǎn),且,問線段的垂直平分線是否過定點(diǎn)?若過定點(diǎn),求出此定點(diǎn)的坐標(biāo),若不過定點(diǎn),說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某度假酒店為了解會(huì)員對(duì)酒店的滿意度,從中抽取50名會(huì)員進(jìn)行調(diào)查,把會(huì)員對(duì)酒店的“住宿滿意度”與“餐飲滿意度”都分為五個(gè)評(píng)分標(biāo)準(zhǔn):1分(很不滿意);2分(不滿意);3分(一般);4分(滿意);5分(很滿意).其統(tǒng)計(jì)結(jié)果如下表(住宿滿意度為,餐飲滿意度為)
(1)求“住宿滿意度”分?jǐn)?shù)的平均數(shù);
(2)求“住宿滿意度”為3分時(shí)的5個(gè)“餐飲滿意度”人數(shù)的方差;
(3)為提高對(duì)酒店的滿意度,現(xiàn)從且的會(huì)員中隨機(jī)抽取2人征求意見,求至少有1人的“住宿滿意度”為2的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,橢圓C:(a>b>0)離心率為,其短軸長(zhǎng)為2.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)如圖,A為橢圓C的左頂點(diǎn),P,Q為橢圓C上兩動(dòng)點(diǎn),直線PO交AQ于E,直線QO交AP于D,直線OP與直線OQ的斜率分別為k1,k2,且k1k2=,(λ,μ為非零實(shí)數(shù)),求λ2+μ2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|2x﹣1|+|x+1|,g(x)=|x﹣a|+|x+a|.
(Ⅰ)解不等式f(x)>9;
(Ⅱ)x1∈R,x2∈R,使得f(x1)=g(x2),求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com