【題目】已知函數(shù)f(x)= (t+1)lnx,,其中t∈R.

(1)若t=1,求證:當(dāng)x>1時(shí),f(x)>0成立;

(2)若t> ,判斷函數(shù)g(x)=x[f(x)+t+1]的零點(diǎn)的個(gè)數(shù).

【答案】(1)見解析(2)1

【解析】試題分析:(1)當(dāng)時(shí),對求導(dǎo)得增區(qū)間, 得減區(qū)間,進(jìn)而求出函數(shù)的最小值值,即可證明;(2)t> ,求得函數(shù)g(x)=x[f(x)+t+1]的導(dǎo)函數(shù),研究其單調(diào)性,根據(jù)零點(diǎn)定理再利用導(dǎo)數(shù)即可判定零點(diǎn)的個(gè)數(shù).

試題解析:解:(1)t=1時(shí),f(x)=x﹣﹣2lnx,x>0

∴f′(x)=1+==≥0,

∴f(x)在(1,+∞)上單調(diào)遞增,

∴f(x)>f(1)=1﹣1﹣0=0,

∴x>1,f(x)>0成立,

(2)當(dāng)x(0,+∞),g(x)=tx2﹣(t+1)xlnx+(t+1)x﹣1

∴g′(x)=2tx﹣(t+1)lnx,

設(shè)m(x)=2tx﹣(t+1)lnx, ∴m′(x)=2t﹣=

令m′(x)=0,得x=

當(dāng)0<x<時(shí),m'(x)<0;當(dāng)時(shí)x>,m'(x)>0.

∴g'(x)在(0,)上單調(diào)遞減,在(,+∞)上單調(diào)遞增.

∴g'(x)的最小值為g′()=(t+1)(1﹣ln),

∵t>,∴ =++<e.

∴g'(x)的最小值g′()=(t+1)(1﹣ln)>0,

從而,g(x)在區(qū)間(0,+∞)上單調(diào)遞增.

又g(1)=2t>0,又g()=+(6+2lnt)﹣1,

設(shè)h(t)=e3t﹣(2lnt+6).

則h′(t)=e3

令h'(t)=0得t=.由h'(t)<0,得0<t<

由h'(t)>0,得t>

∴h(t)在(0,)上單調(diào)遞減,在(,+∞)上單調(diào)遞增.

∴h(t)min=h()=2﹣2ln2>0.

∴h(t)>0恒成立.∴e3t>2lnt+6,.

∴g()<+﹣1=++﹣1<++﹣1<0.

∴當(dāng)t>時(shí),函數(shù)g(x)恰有1個(gè)零點(diǎn)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的多面體中, 平面

1)在上求作點(diǎn),使平面,請寫出作法并說明理由;

2)求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCDA1B1C1D1中,EAA1的中點(diǎn),畫出過D1C、E的平面與平面ABB1A1的交線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,左頂點(diǎn)為.

(1)求橢圓的方程;

(2)已知為坐標(biāo)原點(diǎn), 是橢圓上的兩點(diǎn),連接的直線平行軸于點(diǎn),證明: 成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中有五張卡片,其中紅色卡片三張,標(biāo)號(hào)分別為1,2,3;藍(lán)色卡片兩張,標(biāo)號(hào)分別為1,2.

(1)從以上五張卡片中任取兩張,求這兩張卡片顏色不同且標(biāo)號(hào)之和小于4的概率;

(2)現(xiàn)袋中再放入一張標(biāo)號(hào)為0的綠色卡片,從這六張卡片中任取兩張,求這兩張卡片顏色不同且標(biāo)號(hào)之和小于4的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn),橢圓的左,右頂點(diǎn)分別為.過點(diǎn)的直線與橢圓交于兩點(diǎn),且的面積是的面積的3倍.

(Ⅰ)求橢圓的方程;

(Ⅱ)若軸垂直,是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn),且滿足,試問直線的斜率是否為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=2sin(x-)-,現(xiàn)將f(x)的圖象向左平移個(gè)單位長度,再向上平移個(gè)單位長度,得到函數(shù)g(x)的圖象.

(1)求f()+g()的值;

(2)若a,b,c分別是△ABC三個(gè)內(nèi)角A,B,C的對邊,a+c=4,且當(dāng)x=B時(shí),g(x)取得最大值,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】產(chǎn)品的廣告費(fèi)支出x與銷售額y(單位百萬元)之間有如下對應(yīng)數(shù)據(jù)

x

2

4

5

6

8

y

30

40

60

50

70

(1)畫出散點(diǎn)圖.

(2)求回歸方程.

(3)試預(yù)測廣告費(fèi)支出為10百萬元時(shí)銷售額多大?

查看答案和解析>>

同步練習(xí)冊答案