(本題14分)設(shè)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002403777427.png" style="vertical-align:middle;" />,
(Ⅰ)若,求的取值范圍;
(Ⅱ)求的最大值與最小值,并求出最值時(shí)對(duì)應(yīng)的的值.
(Ⅰ)
(Ⅱ)當(dāng)時(shí),有最小值;當(dāng)時(shí),有最大值

試題分析:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002403793571.png" style="vertical-align:middle;" />,而,
所以的取值范圍為區(qū)間.                         ……6分
(Ⅱ)記.……7分
在區(qū)間是減函數(shù),在區(qū)間是增函數(shù), ……8分∴當(dāng)時(shí),
有最小值;                            ……11分
當(dāng)時(shí),
有最大值.                                 ……14分
點(diǎn)評(píng):換元法經(jīng)?疾閼(yīng)用,要特別注意換元前后變量的范圍是否發(fā)生了變化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)
(1)若試判斷函數(shù)零點(diǎn)個(gè)數(shù);
(2)若對(duì)任意的,且,>0),試證明:
成立。
(3)是否存在,使同時(shí)滿足以下條件:①對(duì)任意,,且②對(duì)任意的,都有?若存在,求出的值,若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
⑴解不等式;
⑵若不等式的解集為空集,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù).
(1)判斷函數(shù)在定義域上的單調(diào)性;
(2)利用題(1)的結(jié)論,,求使不等式上恒成立時(shí)的實(shí)數(shù)的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)在區(qū)間恰有2個(gè)零點(diǎn),則的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)定義在上的函數(shù)是最小正周期為的偶函數(shù),當(dāng)時(shí),,且在上單調(diào)遞減,在上單調(diào)遞增,則函數(shù)上的零點(diǎn)個(gè)數(shù)為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=lnx-的零點(diǎn)一定位于區(qū)間(  )
A.(,1)B.(1,2)C.(2,e)D.(e,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)滿足,且,則下列等式不成立的是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)為增函數(shù),且上的偶函數(shù),若,則實(shí)數(shù)的取值范圍是    
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案