分析 根據(jù)正弦定理和解直角三角形即可求出.
解答 解:如圖所示,
A、B兩點的距離為6米,當(dāng)此人沿正北方向走到C點時,測得∠BCO=45°,∠ACO=30°,
∴∠BCA=∠BCO-∠ACO=45°-30°=15°.
由題意,知∠BAC=120°,∠ABC=45°.
在△ABC中,由正弦定理,得$\frac{AC}{sin∠ABC}$=$\frac{AB}{sin∠BCA}$,即有AC=$\frac{6×sin45°}{sin15°}$=6$\sqrt{3}$+6
在Rt△AOC中,有
OC=AC•cos30°=(6$\sqrt{3}$+6)×$\frac{\sqrt{3}}{2}$=9+3$\sqrt{3}$,
設(shè)步行速度為x米/分,
則x=$\frac{9+3\sqrt{3}}{3}$=3+$\sqrt{3}$≈4.73.
即此人步行的速度約為4.73米/分.
點評 本題考查了解三角形的問題,關(guān)鍵是掌握正弦定理,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4034 | B. | 4032 | C. | 4030 | D. | 4028 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1007 | B. | 1006 | C. | 2014 | D. | 2013 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{e}{2}$ | B. | 2 | C. | 1 | D. | $\frac{e}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com