下列命題正確的有 (把所有正確命題的序號(hào)填在橫線上):
①若數(shù)列{an}是等差數(shù)列,且am+an=as+at(m、n、s、t∈N*),則m+n=s+t;
②若Sn是等差數(shù)列{an}的前n項(xiàng)的和,則Sn,S2n-Sn,S3n-S2n成等差數(shù)列;
③若Sn是等比數(shù)列{an}的前n項(xiàng)的和,則Sn,S2n-Sn,S3n-S2n成等比數(shù)列;
④若Sn是等比數(shù)列{an}的前n項(xiàng)的和,且Sn=Aqn+B;(其中A、B是非零常數(shù),n∈N*),則A+B為零.
【答案】
分析:①取數(shù)列{a
n}為常數(shù)列,即可推出該命題是假命題;②根據(jù)等差數(shù)列的性質(zhì),推出2(S
2n-S
n)=S
n+(S
3n-S
2n),即可得到S
n,S
2n-S
n,S
3n-S
2n,…為等差數(shù)列;③利用等比數(shù)列的特例判斷選項(xiàng)是否正確;④根據(jù)數(shù)列的前n項(xiàng)的和減去第n-1項(xiàng)的和得到數(shù)列的第n項(xiàng)的通項(xiàng)公式,即可得到此等比數(shù)列的首項(xiàng)與公比,根據(jù)首項(xiàng)和公比,利用等比數(shù)列的前n項(xiàng)和的公式表示出前n項(xiàng)的和,與已知的S
n=3
n+b對(duì)比后,即可得到b的值.
解答:解:①取數(shù)列{a
n}為常數(shù)列,對(duì)任意m、n、s、t∈N*,都有a
m+a
n=a
s+a
t,故錯(cuò);
②設(shè)等差數(shù)列a
n的首項(xiàng)為a
1,公差為d,
則S
n=a
1+a
2+…+a
n,S
2n-S
n=a
n+1+a
n+2+…+a
2n=a
1+nd+a
2+nd+…+a
n+nd=S
n+n
2d,
同理:S
3n-S
2n=a
2n+1+a
2n+2+…+a
3n=a
n+1+a
n+2+…+a
2n+n
2d=S
2n-S
n+n
2d,
∴2(S
2n-S
n)=S
n+(S
3n-S
2n),
∴S
n,S
2n-S
n,S
3n-S
2n是等差數(shù)列.此選項(xiàng)正確;
③設(shè)a
n=(-1)
n,
則S
2=0,S
4-S
2=0,S
6-S
4=0,
∴此數(shù)列不是等比數(shù)列,此選項(xiàng)錯(cuò);
④因?yàn)閍
n=S
n-S
n-1=(Aq
n+B)-(Aq
n-1+B)=Aq
n-Aq
n-1=(Aq-1)×q
n-1,
所以此數(shù)列為首項(xiàng)是Aq-1,公比為q的等比數(shù)列,
則S
n=
,
所以B=
,A=-
,∴A+B=0,故正確;
故答案為②④.
點(diǎn)評(píng):此題考查學(xué)生靈活運(yùn)用等差、等比數(shù)列的性質(zhì)化簡(jiǎn)求值,是一道綜合題.屬中檔題.