在邊長為2的正三角形ABC中,以A為圓心,
3
為半徑畫一弧,分別交AB,AC于D,E.若在△ABC這一平面區(qū)域內(nèi)任丟一粒豆子,則豆子落在扇形ADE內(nèi)的概率是
 
分析:本題考查的知識點是幾何概型的意義,我們由三角形ABC的邊長為2不難求出三角形ABC的面積,又由扇形的半徑為
3
,我們也可以求出扇形的面積,代入幾何概型的計算公式即可求出答案.
解答:精英家教網(wǎng)解:已知如下圖示:
S△ABC=
1
2
×2×
3
=
3
,
陰影部分的扇形面積,
S=
60
360
π•
3
2
=
π
2

則豆子落在扇形ADE內(nèi)的概率P=
S
S△ABC
=
π
2
3
=
3
π
6
,
故答案為:
3
π
6
點評:幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個“幾何度量”只與“大小”有關(guān),而與形狀和位置無關(guān).解決的步驟均為:求出滿足條件A的基本事件對應(yīng)的“幾何度量”N(A),再求出總的基本事件對應(yīng)的“幾何度量”N,最后根據(jù)P=
N(A)
N
求解.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在邊長為2的正三角形內(nèi)隨機地取一點,則該點到三角形各頂點的距離均不小于1的概率是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在邊長為
2
的正三角形ABC中,設(shè)
AB
=
c
BC
=
a
,
CA
=
b
,則
a
b
+
b
c
+
c
a
等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在邊長為
2
的正三角形ABC中,設(shè)
AB
=c,
BC
=a,
CA
=b
,則a•b+b•c+c•a=
-3
-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在邊長為2的正三角形ABC中,
AB
BC
+
BC
CA
+
CA
AB
等于(  )

查看答案和解析>>

同步練習冊答案