【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求函數(shù)的極小值;

(Ⅱ)當(dāng)時(shí),討論的單調(diào)性;

(Ⅲ)若函數(shù)在區(qū)間上有且只有一個(gè)零點(diǎn),求的取值范圍.

【答案】(Ⅰ);(Ⅱ)詳見解析;(Ⅲ)

【解析】

(Ⅰ)由題意,當(dāng)時(shí),求得,得出函數(shù)的單調(diào)性,進(jìn)而求解函數(shù)的極值;

(Ⅱ)由,由,得,分類討論,即可得到函數(shù)的單調(diào)區(qū)間;

(Ⅲ)由(1)和(2),分當(dāng),分類討論,分別求得函數(shù)的單調(diào)性和極值,即可得出相應(yīng)的結(jié)論,進(jìn)而得到結(jié)論.

解:()當(dāng)時(shí)解得,

又因?yàn)楫?dāng),函數(shù)為減函數(shù)

當(dāng),,函數(shù)為增函數(shù).

所以,的極小值為.

(Ⅱ).當(dāng)時(shí).

(ⅰ)若,.故上單調(diào)遞增;

(ⅱ)若.故當(dāng)時(shí),;

當(dāng)時(shí).

所以,單調(diào)遞增,在單調(diào)遞減.

(ⅲ)若,則.故當(dāng)時(shí),

當(dāng)時(shí),.

所以,單調(diào)遞增,在單調(diào)遞減.

(Ⅲ)(1)當(dāng)時(shí),,令,.

因?yàn)楫?dāng)時(shí),當(dāng)時(shí),

所以此時(shí)在區(qū)間上有且只有一個(gè)零點(diǎn).

(2)當(dāng)時(shí)

(。┊(dāng)時(shí),由(Ⅱ)可知上單調(diào)遞增,,此時(shí)在區(qū)間上有且只有一個(gè)零點(diǎn).

(ⅱ)當(dāng)時(shí),由(Ⅱ)的單調(diào)性結(jié)合,

只需討論的符號(hào)

當(dāng)時(shí),,在區(qū)間上有且只有一個(gè)零點(diǎn);

當(dāng)時(shí),,函數(shù)在區(qū)間上無零點(diǎn).

(ⅲ)當(dāng)時(shí)由(Ⅱ)的單調(diào)性結(jié)合,,此時(shí)在區(qū)間上有且只有一個(gè)零點(diǎn).

綜上所述,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)大學(xué)畢業(yè)后,決定利用所學(xué)專業(yè)進(jìn)行自主創(chuàng)業(yè),經(jīng)過市場(chǎng)調(diào)查,生產(chǎn)一小型電子產(chǎn)品需投入固定成本2萬元,每生產(chǎn)萬件,需另投入流動(dòng)成本萬元,當(dāng)年產(chǎn)量小于萬件時(shí),(萬元);當(dāng)年產(chǎn)量不小于7萬件時(shí),(萬元).已知每件產(chǎn)品售價(jià)為6元,假若該同學(xué)生產(chǎn)的商品當(dāng)年能全部售完.

1)寫出年利潤(萬年)關(guān)于年產(chǎn)量(萬件)的函數(shù)解析式;(注:年利潤=年銷售收入-固定成本-流動(dòng)成本)

2)當(dāng)年產(chǎn)量約為多少萬件時(shí),該同學(xué)的這一產(chǎn)品所獲年利潤最大?最大年利潤是多少?

(取.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最小正周期為,將函數(shù)的圖像向右平移個(gè)單位長度,再向下平移個(gè)單位長度,得到函數(shù)的圖像.

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)在銳角中,角的對(duì)邊分別為,若,,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知直線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某課題小組共10人,已知該小組外出參加交流活動(dòng)次數(shù)為1,23的人數(shù)分別為3,3, 4,現(xiàn)從這10人中隨機(jī)選出2人作為該組代表參加座談會(huì).

1)記“選出2人外出參加交流活動(dòng)次數(shù)之和為4”為事件A,求事件A發(fā)生的概率;

2)設(shè)X為選出2人參加交流活動(dòng)次數(shù)之差的絕對(duì)值,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最小正周期為,將的圖象向右平移個(gè)單位長度得到函數(shù)的圖象,有下列叫個(gè)結(jié)論

單調(diào)遞增; 為奇函數(shù);

的圖象關(guān)于直線對(duì)稱; 的值域?yàn)?/span>.

其中正確的結(jié)論是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)若函數(shù)的圖象與函數(shù)的圖象相切,求的值;

2)設(shè)函數(shù),. 若存在,,使成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求的單調(diào)區(qū)間;

(2)求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以坐標(biāo)原點(diǎn)為圓心的圓與拋物線相交于不同的兩點(diǎn), ,與拋物線的準(zhǔn)線相交于不同的兩點(diǎn) ,且.

(1)求拋物線的方程;

(2)若不經(jīng)過坐標(biāo)原點(diǎn)的直線與拋物線相交于不同的兩點(diǎn) ,且滿足.證明直線過定點(diǎn),并求出點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案