【題目】脫貧是政府關(guān)注民生的重要任務(wù),了解居民的實(shí)際收入狀況就顯得尤為重要.現(xiàn)從某地區(qū)隨機(jī)抽取100個(gè)農(nóng)戶,考察每個(gè)農(nóng)戶的年收入與年積蓄的情況進(jìn)行分析,設(shè)第i個(gè)農(nóng)戶的年收入xi(萬元),年積蓄yi(萬元),經(jīng)過數(shù)據(jù)處理得 . (Ⅰ)已知家庭的年結(jié)余y對年收入x具有線性相關(guān)關(guān)系,求線性回歸方程;
(Ⅱ)若該地區(qū)的農(nóng)戶年積蓄在5萬以上,即稱該農(nóng)戶已達(dá)小康生活,請預(yù)測農(nóng)戶達(dá)到小康生活的最低年收入應(yīng)為多少萬元?
附:在 = x+ 中, = = ,其中 為樣本平均值.

【答案】解:(Ⅰ)由題意知 , , 所以線性回歸方程為 ;
(Ⅱ)令 得x≥15,
由此可預(yù)測該農(nóng)戶的年收入最低為15萬元.
【解析】(Ⅰ)已知家庭的年結(jié)余y對年收入x具有線性相關(guān)關(guān)系,求出回歸系數(shù),即可求線性回歸方程;(Ⅱ)令 得x≥15即可得出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)為定義在[﹣1,1]上的奇函數(shù),當(dāng)x∈[﹣1,0]時(shí),函數(shù)解析式為
(Ⅰ)求f(x)在[0,1]上的解析式;
(Ⅱ)求f(x)在[0,1]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=loga(x+1),g(x)=loga(1﹣x)(a>0且a≠1).
(1)求f(x)+g(x)的定義域;
(2)判斷函數(shù)f(x)+g(x)的奇偶性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)的某種產(chǎn)品被檢測出其中一項(xiàng)質(zhì)量指標(biāo)存在問題.該企業(yè)為了檢查生產(chǎn)該產(chǎn)品的甲,乙兩條流水線的生產(chǎn)情況,隨機(jī)地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取件產(chǎn)品作為樣本,測出它們的這一項(xiàng)質(zhì)量指標(biāo)值.若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品.表是甲流水線樣本的頻數(shù)分布表,圖是乙流水線樣本的頻率分布直方圖.

:甲流水線樣本的頻數(shù)分布表

質(zhì)量指標(biāo)值

頻數(shù)

:乙流水線樣本頻率分布直方圖

(Ⅰ)根據(jù)圖,估計(jì)乙流水線生產(chǎn)產(chǎn)品該質(zhì)量指標(biāo)值的中位數(shù).

(Ⅱ)若將頻率視為概率,某個(gè)月內(nèi)甲,乙兩條流水線均生產(chǎn)了件產(chǎn)品,則甲,乙兩條流水線分別生產(chǎn)出不合格品約多少件.

(Ⅲ)根據(jù)已知條件完成下面列聯(lián)表,并回答是否有的把握認(rèn)為“該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲,乙兩條流水線的選擇有關(guān)”?

甲生產(chǎn)線

乙生產(chǎn)線

合計(jì)

合格品

不合格品

合計(jì)

附: (其中樣本容量)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓M過坐標(biāo)原點(diǎn)O且圓心在曲線 上.
(1)若圓M分別與x軸、y軸交于點(diǎn)A、B(不同于原點(diǎn)O),求證:△AOB的面積為定值;
(2)設(shè)直線 與圓M 交于不同的兩點(diǎn)C,D,且|OC|=|OD|,求圓M的方程;
(3)設(shè)直線 與(Ⅱ)中所求圓M交于點(diǎn)E、F,P為直線x=5上的動(dòng)點(diǎn),直線PE,PF與圓M的另一個(gè)交點(diǎn)分別為G,H,求證:直線GH過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且 ,則Sn取最小值時(shí),n的值是(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)已知直線l經(jīng)過點(diǎn)P(4,1),且在兩坐標(biāo)軸上的截距相等,求直線l的方程;
(2)已知直線l經(jīng)過點(diǎn)P(3,4),且直線l的傾斜角為θ(θ≠90°),若直線l經(jīng)過另外一點(diǎn)(cosθ,sinθ),求此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=60°,D是BC上一點(diǎn),AB=31,BD=20,AD=21.

(1)求cos∠B的值;
(2)求sin∠BAC的值和邊BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)

設(shè)U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)xm=0},

若(UA)∩B,求m的值.

查看答案和解析>>

同步練習(xí)冊答案