第17屆亞運會將于2014年9月18日至10月4日在韓國仁川進行,為了搞好接待工作,組委會招募了16名男志愿者和14名女志愿者,調(diào)查發(fā)現(xiàn),男、女志愿者中分別有10人和6人喜愛運動,其余不喜愛.
(1)根據(jù)調(diào)查數(shù)據(jù)制作2×2列聯(lián)表;
(2)根據(jù)列聯(lián)表的獨立性檢驗,能否認為性別與喜愛運動有關(guān)?

參考數(shù)據(jù)
當(dāng)時,無充分證據(jù)判定變量有關(guān)聯(lián),可以認為兩變量無關(guān)聯(lián);
當(dāng)時,有把握判定變量有關(guān)聯(lián);
當(dāng)時,有把握判定變量有關(guān)聯(lián);
當(dāng)時,有把握判定變量有關(guān)聯(lián).
(參考公式:,其中.)

(1)2×2列聯(lián)表如下

 
喜愛運動
不喜愛運動
合計

10
6
16

6
8
14
合計
16
14
30
(2)不能認為性別與喜愛運動有關(guān).

解析試題分析:(1)根據(jù)所給條件中的數(shù)據(jù),列出2×2列聯(lián)表即可;(2)根據(jù)列聯(lián)表中的數(shù)據(jù),代入公式計算出,進而比較數(shù)據(jù),得到結(jié)論.
試題解析:(1)2×2列聯(lián)表如下

 
喜愛運動
不喜愛運動
合計

10
6
16

6
8
14
合計
16
14
30
(2)根據(jù)列聯(lián)表中的數(shù)據(jù),代入公式可得

所以不能認為性別與喜愛運動有關(guān).
考點:獨立性檢驗.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2013年9月20日是第25個全國愛牙日。某區(qū)衛(wèi)生部門成立了調(diào)查小組,調(diào)查 “常吃零食與患齲齒的關(guān)系”,對該區(qū)六年級800名學(xué)生進行檢查,按患齲齒和不患齲齒分類,得匯總數(shù)據(jù):不常吃零食且不患齲齒的學(xué)生有60名,常吃零食但不患齲齒的學(xué)生有100名,不常吃零食但患齲齒的學(xué)生有140名.
(1)能否在犯錯概率不超過0.001的前提下,認為該區(qū)學(xué)生的常吃零食與患齲齒有關(guān)系?
(2)4名區(qū)衛(wèi)生部門的工作人員隨機分成兩組,每組2人,一組負責(zé)數(shù)據(jù)收集,另一組負責(zé)數(shù)據(jù)處理.求工作人員甲分到負責(zé)收集數(shù)據(jù)組,工作人員乙分到負責(zé)數(shù)據(jù)處理組的概率.


0.010
0.005
0.001

6.635
7.879
10.828
附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

從5名男生和3名女生中任選3人參加奧運會火炬接力活動.若隨機變量X表示所選3人中女生的人數(shù),求X的分布表及P(X<2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙、丙三個車床加工的零件分別為350個,700個,1050個,現(xiàn)用分層抽樣的方法隨機抽取6個零件進行檢驗.
(1)求從甲、乙、丙三個車床中抽取的零件的件數(shù);
(2)從抽取的6個零件中任意取出2個,已知這兩個零件都不是甲車床加工的,求其中至少有一個是乙車床加工的零件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖是某市3月1日至14日的空氣質(zhì)量指數(shù)趨勢圖,空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染,某人隨機選擇3月1日至3月13日中的某一天到達該市,并停留2天.

(1)求此人到達當(dāng)日空氣質(zhì)量優(yōu)良的概率;
(2)求此人在該市停留期間只有1天空氣重度污染的概率;
(3)由圖判斷從哪天開始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

個同樣型號的產(chǎn)品中,有個是正品,個是次品,從中任取個,求(1)其中所含次品數(shù)的期望、方差;(2)事件“含有次品”的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

現(xiàn)有甲、乙兩個靶,某射手向甲靶射擊一次,命中的概率為,命中得1分,沒有命中得0分;向乙靶射擊兩次,每次命中的概率為,每命中一次得2分,沒有命中得0分.該射手每次射擊的結(jié)果相互獨立,假設(shè)該射手完成以上三次射擊.
(1)求該射手恰好命中一次的概率.
(2)求該射手的總得分X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

形狀如圖所示的三個游戲盤中(圖①是正方形,M,N分別是所在邊中點,圖②是半徑分別為2和4的兩個同心圓,O為圓心,圖③是正六邊形,點P為其中心)各有一個玻璃小球,依次搖動三個游戲盤后,將它們水平放置,就完成了一局游戲.

(1)一局游戲后,這三個盤中的小球都停在陰影部分的概率是多少?
(2)用隨機變量X表示一局游戲后,小球停在陰影部分的事件數(shù)與小球沒有停在陰影部分的事件數(shù)之差的絕對值,求隨機變量X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

袋內(nèi)裝有6個球,這些球依次被編號為1,2,3,…,6,設(shè)編號為n的球質(zhì)量為n2-6n+12(單位:g),如果從這些球中不放回的任意取出2個球(不受重量、編號的影響),求取出的兩球質(zhì)量相等的概率.

查看答案和解析>>

同步練習(xí)冊答案