精英家教網 > 高中數學 > 題目詳情

【題目】已知點,且,滿足條件的點的軌跡為曲線

1)求曲線的方程;

2)是否存在過點的直線,直線與曲線相交于兩點,直線軸分別交于兩點,使得?若存在,求出直線的方程;若不存在,請說明理由.

【答案】12)存在,

【解析】

1)由看成到兩定點的和為定值,滿足橢圓定義,用定義可解曲線的方程.

2)先討論斜率不存在情況是否符合題意,當直線的斜率存在時,設直線點斜式方程,由,可得,再直線與橢圓聯解,利用根的判別式得到關于的一元二次方程求解.

解:,

, ,

可得,即為,

,可得的軌跡是以為焦點,且的橢圓,

,可得,可得曲線的方程為;

假設存在過點的直線l符合題意.

當直線的斜率不存在,設方程為,可得為短軸的兩個端點,

不成立;

當直線的斜率存在時,設方程為,

,可得,即

可得,化為,

可得,

在橢圓內,可得直線與橢圓相交,

,

化為,即為,解得,

所以存在直線符合題意,且方程為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

1)討論函數的單調性;

2)若,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

已知曲線的參數方程為為參數).以直角坐標系的原點為極點,軸的正半軸為極軸建立坐標系,曲線的極坐標方程為.

(1)求的普通方程和的直角坐標方程;

(2)若過點的直線交于兩點,與交于,兩點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為F1,F2,過點F1的直線與C交于A,B兩點.ABF2的周長為,且橢圓的離心率為.

1)求橢圓C的標準方程:

2)設點P為橢圓C的下頂點,直線PAPBy2分別交于點M,N,當|MN|最小時,求直線AB的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某蔬菜批發(fā)商經銷某種新鮮蔬菜(以下簡稱蔬菜),購入價為200元/袋,并以300元/袋的價格售出,若前8小時內所購進的蔬菜沒有售完,則批發(fā)商將沒售完的蔬菜以150元/袋的價格低價處理完畢(根據經驗,2小時內完全能夠把蔬菜低價處理完,且當天不再購進).該蔬菜批發(fā)商根據往年的銷量,統計了100蔬菜在每天的前8小時內的銷售量,制成如下頻數分布條形圖.

1)若某天該蔬菜批發(fā)商共購入6蔬菜,有4蔬菜在前8小時內分別被4名顧客購買,剩下2袋在8小時后被另2名顧客購買.現從這6名顧客中隨機選2人進行服務回訪,則至少選中1人是以150元/袋的價格購買的概率是多少?

2)以上述樣本數據作為決策的依據.

i)若今年蔬菜上市的100天內,該蔬菜批發(fā)商堅持每天購進6蔬菜,試估計該蔬菜批發(fā)商經銷蔬菜的總盈利值;

ii)若明年該蔬菜批發(fā)商每天購進蔬菜的袋數相同,試幫其設計明年的蔬菜的進貨方案,使其所獲取的平均利潤最大.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業(yè)為了解該企業(yè)工人組裝某產品所用時間,對每個工人組裝一個該產品的用時作了記錄,得到大量統計數據.從這些統計數據中隨機抽取了個數據作為樣本,得到如圖所示的莖葉圖(單位:分鐘).若用時不超過(分鐘),則稱這個工人為優(yōu)秀員工.

1)求這個樣本數據的中位數和眾數;

2)從樣本數據用時不超過分鐘的工人中隨機抽取個,求至少有一個工人是優(yōu)秀員工的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】石嘴山市第三中學高三年級統計學生的最近20次數學周測成績(滿分150分),現有甲乙兩位同學的20次成績如莖葉圖所示:

1)根據莖葉圖求甲乙兩位同學成績的中位數,并將同學乙的成績的頻率分布直方圖填充完整;

(2)根據莖葉圖比較甲乙兩位同學數學成績的平均值及穩(wěn)定程度(不要求計算出具體值,給出結論即可);

(3)現從甲乙兩位同學的不低于140分的成績中任意選出2個成績,記事件為“其中2個成績分別屬于不同的同學”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正方體的棱長為2,平面.平面截此正方體所得的截面有以下四個結論:

①截面形狀可能是正三角形②截面的形狀可能是正方形

③截面形狀可能是正五邊形④截面面積最大值為

則正確結論的編號是(

A.①④B.①③C.②③D.②④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中為常數.

1)討論函數的單調性;

2)當為自然對數的底數),時,若方程有兩個不等實數根,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案