【題目】已知f(x)是定義域?yàn)椋?,+∞)的單調(diào)函數(shù),若對(duì)任意的x∈(0,+∞),都有 ,且方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在區(qū)間(0,3]上有兩解,則實(shí)數(shù)a的取值范圍是( )
A.0<a≤5
B.a<5
C.0<a<5
D.a≥5
【答案】A
【解析】解:∵定義域?yàn)椋?,+∞)的單調(diào)函數(shù)f(x)
滿足f[f(x)+log x]=4,
∴必存在唯一的正實(shí)數(shù)a,
滿足f(x)+log x=a,f(a)=4,①
∴f(a)+log a=a,②
由①②得:4+log a=a,log a=a﹣4,
a=( )a﹣4,左增,右減,有唯一解a=3,
故f(x)+log x=a=3,
f(x)=3﹣log x,
由方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在區(qū)間(0,3]上有兩解,
即有|log x|=x3﹣6x2+9x﹣4+a,
由g(x)=x3﹣6x2+9x﹣4+a,g′(x)=3x2﹣12x+9=3(x﹣1)(x﹣3),
當(dāng)1<x<3時(shí),g′(x)<0,g(x)遞減;當(dāng)0<x<1時(shí),g′(x)<0,g(x)遞增.
g(x)在x=1處取得最大值a,g(0)=a﹣4,g(3)=a﹣4,
分別作出y=|log x|,和y=x3﹣6x2+9x﹣4的圖象,可得
兩圖象只有一個(gè)交點(diǎn),將y=x3﹣6x2+9x﹣4的圖象向上平移,
至經(jīng)過(guò)點(diǎn)(3,1),有兩個(gè)交點(diǎn),
由g(3)=1即a﹣4=1,解得a=5,
當(dāng)0<a≤5時(shí),兩圖象有兩個(gè)交點(diǎn),
即方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在區(qū)間(0,3]上有兩解.
故選:A.
由題設(shè)知必存在唯一的正實(shí)數(shù)a,滿足f(x)+log x=a,f(a)=4,f(a)+log a=a,故4+log a=a,log a=a﹣4,a=( )a﹣4,左增,右減,有唯一解a=3,故f(x)+log x=a=3,由題意可得|log x|=x3﹣6x2+9x﹣4+a在區(qū)間(0,3]上有兩解,討論g(x)=x3﹣6x2+9x﹣4+a的單調(diào)性和最值,分別畫出作出y=|log x|,和y=x3﹣6x2+9x﹣4的圖象,通過(guò)平移即可得到a的范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的直三棱柱ABC﹣A1B1C1中,面AA1B1B和面AA1C1C都是邊長(zhǎng)為1的正方形且互相垂直,D為AA1的中點(diǎn),E為BC1的中點(diǎn).
(Ⅰ)證明:DE∥平面A1B1C1;
(Ⅱ)求平面C1BD和平面CBD所成的角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}滿足:a1=1,an+1=3an , n∈N* . 設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和,已知b1≠0,2bn﹣b1=S1Sn , n∈N*
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=bnlog3an , 求數(shù)列{cn}的前n項(xiàng)和Tn;
(Ⅲ)證明:對(duì)任意n∈N*且n≥2,有 + +…+ < .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(x+1)lnx,g(x)=a(x﹣1)(a∈R).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)≥g(x)對(duì)任意的x∈[1,+∞)恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)求證:ln2ln3…lnn> (n≥2,n∈N+).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的四個(gè)頂點(diǎn)圍成的四邊形的面積為,原點(diǎn)到直線的距離為.
(1)求橢圓的方程;
(2)已知定點(diǎn),是否存在過(guò)的直線,使與橢圓交于,兩點(diǎn),且以為直徑的圓過(guò)橢圓的左頂點(diǎn)?若存在,求出的方程:若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)國(guó)家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)PM2.5的年平均濃度不得超過(guò)35微克/立方米,PM2.5的24小時(shí)平均濃度不得超過(guò)75微克/立方米.我市環(huán)保局隨機(jī)抽取了一居民區(qū)2016年20天PM2.5的24小時(shí)平均濃度(單位:微克/立方米)的監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如表:
組別 | PM2.5濃度(微克/立方米) | 頻數(shù)(天) | 頻率 |
第一組 | (0,25] | 3 | 0.15 |
第二組 | (25,50] | 12 | 0.6 |
第三組 | (50,75] | 3 | 0.15 |
第四組 | (75,100] | 2 | 0.1 |
(1)將這20天的測(cè)量結(jié)果按上表中分組方法繪制成的樣本頻率分布直方圖如圖. ①求頻率分布直方圖中a的值;
②求樣本平均數(shù),并根據(jù)樣本估計(jì)總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說(shuō)明理由.
(2)將頻率視為概率,對(duì)于2016年的某3天,記這3天中該居民區(qū)PM2.5的24小時(shí)平均濃度符合環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)的天數(shù)為X,求X的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若執(zhí)行右側(cè)的程序框圖,當(dāng)輸入的x的值為4時(shí),輸出的y的值為2,則空白判斷框中的條件可能為( )
A.x>3
B.x>4
C.x≤4
D.x≤5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù)x,y滿足x2+y2﹣6x+8y﹣11=0,則 的最大值= , |3x+4y﹣28|的最小值=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列判斷正確的是( )
A.若事件A與事件B互斥,則事件A與事件B對(duì)立
B.函數(shù)y= (x∈R)的最小值為2
C.若直線(m+1)x+my﹣2=0與直線mx﹣2y+5=0互相垂直,則m=1
D.“p∧q為真命題”是“p∨q為真命題”的充分不必要條件
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com