【題目】已知點(diǎn)F1為橢圓1(a>b>0)的左焦點(diǎn),在橢圓上,PF1⊥x軸.
(1)求橢圓的方程;
(2)已知直線l:y=kx+m與橢圓交于(1,2),B兩點(diǎn),O為坐標(biāo)原點(diǎn),且OA⊥OB,O到直線l的距離是否為定值?若是,求出該定值;若不是,請(qǐng)說明理由.
【答案】(1)(2)是定值,定值為
【解析】
(1)由PF1⊥x軸可得c=1,即可得橢圓的左右焦點(diǎn)的坐標(biāo),由橢圓的定義求出a的值,由a,b,c的關(guān)系求出a,b的值,進(jìn)而求出橢圓的方程;
(2)將直線l與橢圓的方程聯(lián)立求出兩根之積,由OA⊥OB,可得0,可得k,m的關(guān)系,求出原點(diǎn)到直線的距離的表達(dá)式,可得為定值.
(1)令焦距為2,依題意可得F1(﹣1,0),右焦點(diǎn)F2(1,0),
,所以,
所以橢圓方程為;
(2)設(shè)A(x1,y1),B(x2,y2),
由整理可得(2k2+1)x2+4kmx+2m2﹣2=0,
.
所以y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=k2kmm2,
由,
得3m2=2(k2+1),
所以原點(diǎn)O到直線l的距離為,為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是矩形,側(cè)棱底面,,點(diǎn)是的中點(diǎn).
求證:平面;
若直線與平面所成角為,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠加工的零件按箱出廠,每箱有10個(gè)零件,在出廠之前需要對(duì)每箱的零件作檢驗(yàn),人工檢驗(yàn)方法如下:先從每箱的零件中隨機(jī)抽取4個(gè)零件,若抽取的零件都是正品或都是次品,則停止檢驗(yàn);若抽取的零件至少有1個(gè)至多有3個(gè)次品,則對(duì)剩下的6個(gè)零件逐一檢驗(yàn).已知每個(gè)零件檢驗(yàn)合格的概率為0.8,每個(gè)零件是否檢驗(yàn)合格相互獨(dú)立,且每個(gè)零件的人工檢驗(yàn)費(fèi)為2元.
(1)設(shè)1箱零件人工檢驗(yàn)總費(fèi)用為元,求的分布列;
(2)除了人工檢驗(yàn)方法外還有機(jī)器檢驗(yàn)方法,機(jī)器檢驗(yàn)需要對(duì)每箱的每個(gè)零件作檢驗(yàn),每個(gè)零件的檢驗(yàn)費(fèi)為1.6元.現(xiàn)有1000箱零件需要檢驗(yàn),以檢驗(yàn)總費(fèi)用的數(shù)學(xué)期望為依據(jù),在人工檢驗(yàn)與機(jī)器檢驗(yàn)中,應(yīng)該選擇哪一個(gè)?說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一種類型的題目,此類題目有六個(gè)選項(xiàng)A、B、C、D、E、F,其中有三個(gè)正確選項(xiàng),滿分6分,賦分標(biāo)準(zhǔn)為“每選對(duì)一個(gè)得2分,每選錯(cuò)一個(gè)扣3分,最低得分為0分”.在某校的一次測(cè)試中出現(xiàn)了這種類型的題目,已知此題的正確答案是A、C、D,假定考生作答的答案中選項(xiàng)的個(gè)數(shù)不超過三個(gè).
(1)若甲同學(xué)只能判斷選項(xiàng)A、D是正確的,現(xiàn)在他有兩種選擇:一種是將A、D作為答案,另一種是在B、C、E、F這四個(gè)選項(xiàng)中任選一個(gè)與A、D組成一個(gè)含三個(gè)選項(xiàng)的答案.則甲同學(xué)的最佳選擇是哪一種?請(qǐng)說明理由;
(2)若乙同學(xué)無法判斷所有選項(xiàng),他決定在6個(gè)選項(xiàng)中任選3個(gè)作為答案:
(i)設(shè)乙同學(xué)此題得分為分,求的分布列;
(ii)已知有20名和乙同學(xué)情況相同的同學(xué),且這20名考生答案互不相同,他們此題的平均得分為a分,現(xiàn)從這20名考生中任選3名考生,計(jì)算得到這3人平均得分為b分,試求a的值及的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為:,傾斜角為銳角的直線l過點(diǎn)與單位圓相切.
(1)求曲線C的直角坐標(biāo)方程和直線l的參數(shù)方程;
(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,側(cè)棱垂直于底面,,,為的中點(diǎn),平行于,平行于面,.
(1)求的長(zhǎng);
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們正處于一個(gè)大數(shù)據(jù)飛速發(fā)展的時(shí)代,對(duì)于大數(shù)據(jù)人才的需求也越來越大,其崗位大致可分為四類:數(shù)據(jù)開發(fā)、數(shù)據(jù)分析、數(shù)據(jù)挖掘、數(shù)據(jù)產(chǎn)品.某市2019年這幾類工作崗位的薪資(單位:萬元/月)情況如下表所示:
由表中數(shù)據(jù)可得該市各類崗位的薪資水平高低情況為( )
A.數(shù)據(jù)挖掘>數(shù)據(jù)開發(fā)>數(shù)據(jù)產(chǎn)品>數(shù)據(jù)分析
B.數(shù)據(jù)挖掘>數(shù)據(jù)產(chǎn)品>數(shù)據(jù)開發(fā)>數(shù)據(jù)分析
C.數(shù)據(jù)挖掘>數(shù)據(jù)開發(fā)>數(shù)據(jù)分析>數(shù)據(jù)產(chǎn)品
D.數(shù)據(jù)挖掘>數(shù)據(jù)產(chǎn)品>數(shù)據(jù)分析>數(shù)據(jù)開發(fā)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;
(2)設(shè)的內(nèi)角的對(duì)應(yīng)邊分別為,且,若向量與向量共線,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面PAC⊥平面ABC,是以AC為斜邊的等腰直角三角形,E,F,O分別為PA,PB,AC的中點(diǎn),.
(1)設(shè)G是OC的中點(diǎn),證明:∥平面;
(2)證明:在內(nèi)存在一點(diǎn)M,使FM⊥平面BOE,求點(diǎn)M到OA,OB的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com