(本小題滿分14分) 如圖,已知拋物線與坐標(biāo)軸分別交于A、B、C三點(diǎn),過坐標(biāo)原點(diǎn)O的直線與拋物線交于M、N兩點(diǎn).分別過點(diǎn)C、D作平行于軸的直線、.(1)求拋物線對(duì)應(yīng)的二次函數(shù)的解析式;
(2)求證以O(shè)N為直徑的圓與直線相切;
(3)求線段MN的長(用表示),并證明M、N兩
點(diǎn)到直線的距離之和等于線段MN的長.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知橢圓C:(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為,直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M、N.
①求橢圓C的方程.
②當(dāng)⊿AMN的面積為時(shí),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)橢圓:的兩個(gè)焦點(diǎn)為,點(diǎn)在橢圓上,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過圓的圓心,交橢圓于兩點(diǎn),且關(guān)于點(diǎn)對(duì)稱,求直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知?jiǎng)狱c(diǎn)與平面上兩定點(diǎn)、連線的斜率的積為定
值.
(1)求動(dòng)點(diǎn)的軌跡方程;(2)設(shè)直線與曲線交于、兩點(diǎn),當(dāng)||=時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分15分 )已知橢圓經(jīng)過點(diǎn),一個(gè)焦點(diǎn)是.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓與軸的兩個(gè)交點(diǎn)為、,點(diǎn)在直線上,直線、分別與橢圓交于、兩點(diǎn).試問:當(dāng)點(diǎn)在直線上運(yùn)動(dòng)時(shí),直線是否恒經(jīng)過定點(diǎn)?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線3x2-y2=3,過點(diǎn)P(2,1)作一直線交雙曲線于A、B兩點(diǎn),若P為
AB的中點(diǎn),
(1)求直線AB的方程;
(2)求弦AB的長
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,且焦距為,實(shí)軸長為4
(Ⅰ)求橢圓的方程;
(Ⅱ)在橢圓上是否存在一點(diǎn),使得為鈍角?若存在,求出點(diǎn)的橫坐標(biāo)的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,曲線與坐標(biāo)軸的交點(diǎn)都在圓上.
(1)求圓C的方程;
(2)若圓C與直線交于A,B兩點(diǎn),且求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知是雙曲線上不同的三點(diǎn),且連線經(jīng)過坐標(biāo)原點(diǎn),
若直線的斜率乘積,求雙曲線的離心率;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com