【題目】某城市要建成宜商、宜居的國(guó)際化新城,該城市的東城區(qū)、西城區(qū)分別引進(jìn)8個(gè)廠家,現(xiàn)對(duì)兩個(gè)區(qū)域的16個(gè)廠家進(jìn)行評(píng)估,綜合得分情況如莖葉圖所示.
(1)根據(jù)莖葉圖判斷哪個(gè)區(qū)域廠家的平均分較高;
(2)規(guī)定85分以上(含85分)為優(yōu)秀廠家,若從該兩個(gè)區(qū)域各選一個(gè)優(yōu)秀廠家,求得分差距不超過(guò)5分的概率.
【答案】(1)東城區(qū)的平均分較高.(2)
【解析】試題分析:(1)由莖葉圖可知,每個(gè)分?jǐn)?shù)段中東城區(qū)分都偏高,所以東城區(qū)的平均分較高;(2)寫出從兩個(gè)區(qū)域各選一個(gè)優(yōu)秀廠家的所有基本事件,
試題解析: (1)由莖葉圖可知,每個(gè)分?jǐn)?shù)段中東城區(qū)分都偏高,所以東城區(qū)的平均分較高.
(2)從兩個(gè)區(qū)域各選一個(gè)優(yōu)秀廠家,從中找出得分差距不超過(guò)5的事件共有9種,求概率即可.
則所有的基本事件共15種,
滿足得分差距不超過(guò)5的事件:
(88,85),(88,85),(89,85),(89,84),(89,84),(93,94),(93,94),(94,94),(94,94)共9種.
所以滿足條件的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷函數(shù)的單調(diào)性并證明;
(3)若對(duì)任意的,不等式恒成立,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在處的切線經(jīng)過(guò)點(diǎn)
(1)討論函數(shù)的單調(diào)性;
(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從集合中,抽取三個(gè)不同的元素構(gòu)成子集.
(1)求對(duì)任意的滿足的概率;
(2)若成等差數(shù)列,設(shè)其公差為,求隨機(jī)變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知城和城相距,現(xiàn)計(jì)劃以為直徑的半圓上選擇一點(diǎn)(不與點(diǎn), 重合)建造垃圾處理廠.垃圾處理廠對(duì)城市的影響度與所選地點(diǎn)到城市的距離有關(guān),對(duì)城和城的總影響度為對(duì)城與城的影響度之和.記點(diǎn)到城的距離為,建在處的垃圾處理廠對(duì)城和城的總影響度為.統(tǒng)計(jì)調(diào)查表明:垃圾處理廠對(duì)城的影響度與所選地點(diǎn)到城的距離的平方成反比例關(guān)系,比例系數(shù)為4;對(duì)城的影響度與所選地點(diǎn)到城的距離的平方成反比例關(guān)系,比例系數(shù)為.當(dāng)垃圾處理廠建在的中點(diǎn)時(shí),對(duì)城和城的總影響度為0.065.
(1)將表示成的函數(shù).
(2)討論(1)中函數(shù)的單調(diào)性,并判斷在上是否存在一點(diǎn),使建在此處的垃圾處理廠對(duì)城和城的總影響度最。咳舸嬖,求出該點(diǎn)到城的距離;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】男女共名同學(xué)從左至右排成一排合影,要求左端排男同學(xué),右端排女同學(xué),且女同學(xué)至多有人排在一起,則不同的排法種數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)內(nèi)某汽車品牌一個(gè)月內(nèi)被消費(fèi)者投訴的次數(shù)用表示,據(jù)統(tǒng)計(jì),隨機(jī)變量的概率分布如下:
(1)求的值;
(2)假設(shè)一月與二月被消費(fèi)者投訴的次數(shù)互不影響,求該汽車品牌在這兩個(gè)月內(nèi)被消費(fèi)者投訴次的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·全國(guó)卷Ⅲ文,18)某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.
(1)估計(jì)六月份這種酸奶一天的需求量不超過(guò)300瓶的概率;
(2)設(shè)六月份一天銷售這種酸奶的利潤(rùn)為Y(單位:元).當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫出Y的所有可能值,并估計(jì)Y大于零的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)為了更好地了解設(shè)備改造前后與生產(chǎn)合格品的關(guān)系,隨機(jī)抽取了180件產(chǎn)品進(jìn)行分析,其中設(shè)備改造前的合格品有36件,不合格品有49件,設(shè)備改造后生產(chǎn)的合格品有65件,不合格品有30件.根據(jù)所給數(shù)據(jù):
⑴寫出列聯(lián)表;⑵判斷產(chǎn)品是否合格與設(shè)備改造是否有關(guān),說(shuō)明理由.
附: ,
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com