(本題滿分12分)如圖,在三棱柱中,側(cè)面底面,,,且為中點.
(I)證明:平面;
(II)求直線與平面所成角的正弦值;
(III)在上是否存在一點,使得平面,若不存在,說明理由;若存在,確定點的位置.
(I)證明見解析
(II)
(III) 存在這樣的點E,E為的中點
【解析】(1)因為側(cè)面底面,所以只需證明即可.
(2)可以以O(shè)為原點,ON,OC,OA1所在直線為x,y,z軸建立空間直角坐標系,然后用向量的方法求解線面角的問題.
(3)在(2)的基礎(chǔ)上也可以用向量來求點E位置.也可以取BC的中點M,連接OM,取BC1的中點E,連接ME,則OM//AB,ME//BB1//AA1,所以平面OMB//平面AA1B,所以O(shè)E//平面.從而確定E為BC1的中點.
(Ⅰ)證明:因為,且O為AC的中點,
所以
又由題意可知,平面平面,交線為,且平面,
所以平面
(Ⅱ)如圖,以O(shè)為原點,所在直線分別為x,y,z軸建立空間直角坐標系.
由題意可知,又
所以得:
則有:
設(shè)平面的一個法向量為,則有
,令,得
所以
因為直線與平面所成角和向量與所成銳角互余,所以
(Ⅲ)設(shè)
即,得
所以得
令平面,得 ,
即得
即存在這樣的點E,E為的中點
科目:高中數(shù)學 來源:2014屆江西高安中學高二上期末考試理科數(shù)學試卷(解析版) 題型:解答題
(本題滿分12分)
如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. ,為的中點.
(1)當時,求平面與平面的夾角的余弦值;
(2)當為何值時,在棱上存在點,使平面?
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年湖北省八市高三3月聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題
(本題滿分12分)如圖,在長方體中,已知上下兩底面為正方形,且邊長均為1;側(cè)棱,為中點,為中點,為上一個動點.
(Ⅰ)確定點的位置,使得;
(Ⅱ)當時,求二面角的平
面角余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣西桂林中學高三7月月考試題理科數(shù)學 題型:解答題
(本題滿分12分)如圖,在四棱錐P—ABCD中,底面ABCD為正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中點,F(xiàn)是AD的中點.
⑴求異面直線PD與AE所成角的大;
⑵求證:EF⊥平面PBC ;
⑶求二面角F—PC—B的大。.
查看答案和解析>>
科目:高中數(shù)學 來源:2011年湖南省招生統(tǒng)一考試文科數(shù)學 題型:解答題
(本題滿分12分)
如圖3,在圓錐中,已知的直徑的中點.
(I)證明:
(II)求直線和平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年海南省高三五校聯(lián)考數(shù)學(文) 題型:解答題
(本題滿分12分)
如圖,三棱錐S—ABC中,AB⊥BC,D、E分別為AC、BC的中點,SA=SB=SC。
(1)求證:BC⊥平面SDE;
(2)若AB=BC=2,SB=4,求三棱錐S—ABC的體積。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com