(本題滿分14分)
已知關(guān)于x,y的方程C:
.
(1)當(dāng)m為何值時,方程C表示圓。
(2)若圓C與直線l:x+2y-4=0相交于M,N兩點(diǎn),且MN=
,求m的值。
(1)
時方程C表示圓
(2)
解:(1)方程C可化為
顯然
時方程C表示圓。
(2)圓的方程化為
圓心 C(1,2),半徑
則圓心C(1,2)到直線l:x+2y-4=0的距離為
,有
得
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題12分)
已知圓C:
;
(1)若直線
過
且與圓C相切,求直線
的方程.
(2)是否存在斜率為1直線
,使直線
被圓C截得弦AB,以AB為直徑的圓經(jīng)過原點(diǎn)O. 若存在,求
出直線
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分16分)
已知圓M的圓心M在y軸上,半徑為1.直線
被圓M所截得的弦長為
,且圓心M在直線
的下方.
(1)求圓M的方程;
(2)設(shè)
若AC,BC是圓M的切線,求
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分10分)經(jīng)過點(diǎn)
,傾斜角為
的直線
,與曲線
:
(
為參數(shù))相交于
兩點(diǎn).
(1)寫出直線
的參數(shù)方程,并求當(dāng)
時弦
的長;[
(2)當(dāng)
恰為
的中點(diǎn)時,求直線
的方程;
(3)當(dāng)
時,求直線
的方程;
(4)當(dāng)
變化時,求弦
的中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知圓O的半徑為R,A,B是其圓周上的兩個三等分點(diǎn),則
的值等于( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
一個圓環(huán)直徑為
m,通過金屬鏈條
、
、
、
(
、
、
是圓上三等分點(diǎn))懸掛在
處,圓環(huán)呈水平狀態(tài),并距天花板2m(如圖所示),為使金屬鏈條總長最小,
的長應(yīng)為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
過點(diǎn)
的直線
經(jīng)過圓
的圓心,則直線
的傾斜角大小為( )
A.150° | B.120° | C.30° | D.60° |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
AB,CD是半徑為1的⊙O的兩條弦,它們相交于AB的中點(diǎn)P,若PC=
,∠0AP=45°,則DP=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知圓C:
的圓心為C,點(diǎn)
,O為坐標(biāo)原點(diǎn).
(1)求過點(diǎn)A和圓心的直線方程;
(2)求過點(diǎn)A和原點(diǎn)O的直線被圓C所截得的弦長.
查看答案和解析>>