如圖所示:已知過拋物線的焦點(diǎn)F的直線與拋物線相交于A,B兩點(diǎn)。
(1)求證:以AF為直徑的圓與x軸相切;
(2)設(shè)拋物線在A,B兩點(diǎn)處的切線的交點(diǎn)為M,若點(diǎn)M的橫坐標(biāo)為2,求△ABM的外接圓方程;
(3)設(shè)過拋物線焦點(diǎn)F的直線與橢圓的交點(diǎn)為C、D,是否存在直線使得,若存在,求出直線的方程,若不存在,請說明理由。
(1)根據(jù)題意只要證明∴以線段AF為直徑的圓與x軸相切
(2)
(3)。
解析試題分析:(1)解法一(幾何法)設(shè)線段AF中點(diǎn)為,過作垂直于x軸,垂足為,則
, 2分
又∵, 3分
∴∴以線段AF為直徑的圓與x軸相切。 4分
解法二(代數(shù)法)設(shè),線段AF中點(diǎn)為,過作垂直于x軸,
垂足為,則,
∴. 2分
又∵點(diǎn)為線段AF的中點(diǎn),∴, 3分
∴,
∴以線段AF為直徑的圓與x軸相切。 4分
(2)設(shè)直線AB的方程為,,
由 ,
∴. 5分
由,
, 6分
,故的外接圓圓心為線段的中點(diǎn)。
設(shè)線段AB中點(diǎn)為點(diǎn)P,易證⊙P與拋物線的準(zhǔn)線相切,切點(diǎn)為點(diǎn)M ,
. 7分
8分
又,
. 9分
(3),設(shè),10分
則 ,設(shè),則
11分
將代入可得: . ① 12分
由,
聯(lián)立可得,② 13分
聯(lián)立①②可得 ,解得.
。 14分
考點(diǎn):直線與橢圓的位置關(guān)系
點(diǎn)評:主要是考查了直線與橢圓的位置關(guān)系的運(yùn)用,屬于中檔題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知動點(diǎn)與定點(diǎn)的距離和它到直線的距離之比是常數(shù),記的軌跡為曲線.
(I)求曲線的方程;
(II)設(shè)直線與曲線交于兩點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為,試問:當(dāng)變化時,直線與軸是否交于一個定點(diǎn)?若是,請寫出定點(diǎn)的坐標(biāo),并證明你的結(jié)論;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)平面內(nèi),y軸右側(cè)的一動點(diǎn)P到點(diǎn)的距離比它到軸的距離大
(Ⅰ)求動點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)為曲線上的一個動點(diǎn),點(diǎn),在軸上,若為圓的外切三角形,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線,過軸上一點(diǎn)的直線與拋物線交于點(diǎn)兩點(diǎn)。
證明,存在唯一一點(diǎn),使得為常數(shù),并確定點(diǎn)的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,橢圓的右焦點(diǎn)為,離心率為.分別過,的兩條弦,相交于點(diǎn)(異于,兩點(diǎn)),且.
(1)求橢圓的方程;
(2)求證:直線,的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知曲線,曲線,P是平面上一點(diǎn),若存在過點(diǎn)P的直線與都有公共點(diǎn),則稱P為“C1—C2型點(diǎn)”.
(1)在正確證明的左焦點(diǎn)是“C1—C2型點(diǎn)”時,要使用一條過該焦點(diǎn)的直線,試寫出一條這樣的直線的方程(不要求驗(yàn)證);
(2)設(shè)直線與有公共點(diǎn),求證,進(jìn)而證明原點(diǎn)不是“C1—C2型點(diǎn)”;
(3)求證:圓內(nèi)的點(diǎn)都不是“C1—C2型點(diǎn)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知,直線, 動點(diǎn)到的距離是它到定直線距離的倍. 設(shè)動點(diǎn)的軌跡曲線為.
(1)求曲線的軌跡方程.
(2)設(shè)點(diǎn), 若直線為曲線的任意一條切線,且點(diǎn)、到的距離分別為,試判斷是否為常數(shù),請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點(diǎn)為原點(diǎn),其焦點(diǎn)到直線:的距離為.設(shè)為直線上的點(diǎn),過點(diǎn)作拋物線的兩條切線,其中為切點(diǎn).
(Ⅰ) 求拋物線的方程;
(Ⅱ) 當(dāng)點(diǎn)為直線上的定點(diǎn)時,求直線的方程;
(Ⅲ) 當(dāng)點(diǎn)在直線上移動時,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)直線是曲線的一條切線,.
(Ⅰ)求切點(diǎn)坐標(biāo)及的值;
(Ⅱ)當(dāng)時,存在,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com