如圖所示,在△ABC中,I為△ABC的內(nèi)心,AI交BC于D,交△ABC外接圓于E.

求證:(1)IE=EC;
(2)IE2=ED·EA.

見解析

解析證明 (1)連接IC,∵I為內(nèi)心,

∴∠3=∠4,∠1=∠2.
∵∠1=∠5,∴∠2=∠5.
∴∠3+∠2=∠4+∠5,
∴∠EIC=∠ECI.∴IE=CE.
(2)∵∠E=∠E,∠2=∠5,
∴△ECD∽△EAC,∴,
∴CE2=AE·DE,∴IE2=AE·ED.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:如圖所示,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,DE⊥AC于E,DF⊥BC于F.求證:AE·BF·AB=CD3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,AE是圓O的切線,A是切線,,割線EC交圓O于B,C兩點.

(1)證明:O,D,B,C四點共圓;
(2)設(shè),,求的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直線AB為圓O的切線,切點為B,點C在圓上,∠ABC的角平分線BE交圓于點E,DB垂直BE交圓于點D.

(1)證明:DB=DC;
(2)設(shè)圓的半徑為1,BC=,延長CE交AB于點F,求△BCF外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,若△ABC為等腰三角形,△ABC中,AB=AC,D為CB延長線上一點,E為BC延長線上一點,且滿足AB2=DB·CE.

(1)求證:△ADB∽△EAC;
(2)若∠BAC=40°,求∠DAE的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在直角梯形ABCD中,∠A=∠B=90°,AD∥BC,E為AB上的點,DE平分∠ADC,CE平分∠BCD,以AB為直徑的圓與CD有怎樣的位置關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(拓展深化)如圖所示,AB是⊙O的直徑,弦CD⊥AB于點P,CD=10 cm,AP∶PB=1∶5,求⊙O的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,以梯形ABCD的對角線AC及腰AD為鄰邊作平行四邊形ACED,DC的延長線交BE于點F,求證:EF=BF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在正△ABC中,點D,E分別在邊AC, AB上,且AD=AC,AE=AB,BD,CE相交于點F.

(Ⅰ)求證:A,E,F,D四點共圓;
(Ⅱ)若正△ABC的邊長為2,求A,E,F,D所在圓的半徑.

查看答案和解析>>

同步練習(xí)冊答案