【題目】已知函數(shù)f(x)=x3+ax2+bx(x>0)的圖象與x軸相切于點(3,0). (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若g(x)+f(x)=﹣6x2+(3c+9)x,命題p:x1 , x2∈[﹣1,1],|g(x1)﹣g(x2)|>1為假命題,求實數(shù)c的取值范圍;
(Ⅲ)若h(x)+f(x)=x3﹣7x2+9x+clnx(c是與x無關的負數(shù)),判斷函數(shù)h(x)有幾個不同的零點,并說明理由.
【答案】解:(I)f′(x)=3x2+2ax+b,∵函數(shù)f(x)=x3+ax2+bx(x>0)的圖象與x軸相切于點(3,0). ∴f′(3)=27+6a+b=0,f(3)=27+9a+3b=0,聯(lián)立解得:a=﹣6,b=9.
∴f(x)=x3﹣6x2+9x.
(II)命題p:x1 , x2∈[﹣1,1],|g(x1)﹣g(x2)|>1為假命題,等價于:命題:x1 , x2∈[﹣1,1],|g(x1)﹣g(x2)|≤1為真命題.∵g(x)+f(x)=﹣6x2+(3c+9)x,∴g(x)=﹣x3+3cx.
由命題:x1 , x2∈[﹣1,1],|g(x1)﹣g(x2)|≤1為真命題,可得|g(1)﹣g(﹣1)|≤1,解得: .
又g′(x)=﹣3x2+3c=﹣3 .可得:函數(shù)g(x)在 , 內為減函數(shù),在 內為增函數(shù).
∵函數(shù)g(x)為奇函數(shù),且|g(1)﹣g(﹣1)|≤1,∴只需|g( )﹣g(﹣ )|≤1,則:4c ≤1,解得c≤ .
綜上可得:c的取值范圍是 ≤c≤ .
(III)h(x)+f(x)=x3﹣7x2+9x+clnx(c是與x無關的負數(shù)),∴h(x)=clnx﹣x2 , (x>0).
h′(x)= ﹣2x<0,因此函數(shù)h(x)在(0,+∞)上單調遞減,h(x)至多有一個零點.
∵c<0,∴(c﹣1)2>1,0< <1,∴ =(c﹣1)2﹣ >0,h(1)=﹣1<0.
∴函數(shù)h(x)在 內有一個零點,因此函數(shù)h(x)在(0,+∞)上恰有一個零點.
【解析】(I)f′(x)=3x2+2ax+b,由于函數(shù)f(x)=x3+ax2+bx(x>0)的圖象與x軸相切于點(3,0).可得f′(3)=27+6a+b=0,f(3)=27+9a+3b=0,聯(lián)立解得a,b.即可得出.(II)命題p:x1 , x2∈[﹣1,1],|g(x1)﹣g(x2)|>1為假命題,等價于:命題:x1 , x2∈[﹣1,1],|g(x1)﹣g(x2)|≤1為真命題.由g(x)+f(x)=﹣6x2+(3c+9)x,可得g(x)=﹣x3+3cx.由命題:x1 , x2∈[﹣1,1],|g(x1)﹣g(x2)|≤1為真命題,可得|g(1)﹣g(﹣1)|≤1,解得c范圍.又g′(x)=﹣3x2+3c=﹣3 .利用單調性與奇偶性,只需|g( )﹣g(﹣ )|≤1,解得c,進而得出c的取值范圍.(III)h(x)+f(x)=x3﹣7x2+9x+clnx(c是與x無關的負數(shù)),h(x)=clnx﹣x2 , (x>0).h′(x)= ﹣2x<0,因此函數(shù)h(x)在(0,+∞)上單調遞減,h(x)至多有一個零點.再利用函數(shù)零點判定定理即可判斷出是否有零點.
【考點精析】認真審題,首先需要了解函數(shù)的最大(小)值與導數(shù)(求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值).
科目:高中數(shù)學 來源: 題型:
【題目】設,,表示三條不同的直線,,,表示三個不同的平面,給出下列四個命題:
①若,則;
②若,是在內的射影, ,則;
③若是平面的一條斜線,點,為過點的一條動直線,則可能有且;
④若,則.
其中正確的序號是_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線l的參數(shù)方程為 (t為參數(shù)),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為3ρ2cos2θ+4ρ2sin2θ=12. (Ⅰ)寫出直線l的極坐標方程與曲線C的直角坐標方程;
(Ⅱ)已知與直線l平行的直線l'過點M(1,0),且與曲線C交于A,B兩點,試求|AB|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(a+1)lnx﹣x2 , .
(1)討論函數(shù)f(x)的單調區(qū)間;
(2)若函數(shù)f(x)與g(x)在(0,+∞)上的單調性正好相反. (Ⅰ)對于 ,不等式 恒成立,求實數(shù)t的取值范圍;
(Ⅱ)令h(x)=xg(x)﹣f(x),兩正實數(shù)x1、x2滿足h(x1)+h(x2)+6x1x2=6,證明0<x1+x2≤1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an},an=(2n+m)+(﹣1)n(3n﹣2)(m∈N* , m與n無關),若 a2i﹣1≤k2﹣2k﹣1對一切m∈N*恒成立,則實數(shù)k的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從高一年級學生中隨機抽取40名學生,將他們的期中考試數(shù)學成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如圖所示的頻率分布直方圖,其中前三段的頻率成等比數(shù)列.
(1)求圖中實數(shù)a的值;
(2)若該校高一年級共有學生640人,試估計該校高一年級期中考試數(shù)學成績不低于80分的人數(shù);
(3)若從樣本中數(shù)學成績在[40,50)與[90,100]兩個分數(shù)段內的學生中隨機選取兩名學生,記這兩名學生成績在[90,100]內的人數(shù)為X,求隨機變量X的分布列和期望值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若f(x)為奇函數(shù),且x0是y=f(x)﹣ex的一個零點,則下列函數(shù)中,﹣x0一定是其零點的函數(shù)是( )
A.y=f(﹣x)e﹣x﹣1
B.y=f(x)ex+1
C.y=f(x)ex﹣1
D.y=f(﹣x)ex+1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù),α∈[0,π)).以原點O為極點,以x軸正半軸為極軸,與直角坐標系xOy取相同的長度單位,建立極坐標系.設曲線C的極坐標方程為ρcos2θ=4sinθ. (Ⅰ)設M(x,y)為曲線C上任意一點,求x+y的取值范圍;
(Ⅱ)若直線l與曲線C交于兩點A,B,求|AB|的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com