中,若,則,用類(lèi)比的方法,猜想三棱錐的類(lèi)似性質(zhì),并證明你的猜想
在三棱錐中,三個(gè)側(cè)面兩兩垂直,且與底面所成的角分別為,則
【解題思路】考慮兩條直角邊互相垂直如何類(lèi)比到空間以及兩條直角邊與斜邊所成的角如何類(lèi)比到空間
[解析]由平面類(lèi)比到空間,有如下猜想:“在三棱錐中,三個(gè)側(cè)面兩兩垂直,且與底面所成的角分別為,則
證明:設(shè)在平面的射影為,延長(zhǎng),記
,從而,又
,


【名師指引】(1)找兩類(lèi)對(duì)象的對(duì)應(yīng)元素,如:三角形對(duì)應(yīng)三棱錐,圓對(duì)應(yīng)球,面積對(duì)應(yīng)體積,平面上的角對(duì)應(yīng)空間角等等;(2)找對(duì)應(yīng)元素的對(duì)應(yīng)關(guān)系,如:兩條邊(直線(xiàn))垂直對(duì)應(yīng)線(xiàn)面垂直或面面垂直,邊相等對(duì)應(yīng)面積相等
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

請(qǐng)先閱讀:
在等式)的兩邊求導(dǎo),得:,
由求導(dǎo)法則,得,化簡(jiǎn)得等式:
(1)利用上題的想法(或其他方法),結(jié)合等式 (,正整數(shù)),證明:。
(2)對(duì)于正整數(shù),求證:
(i); (ii); (iii)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


(本小題15分)
設(shè)數(shù)列{}的前n項(xiàng)和為,并且滿(mǎn)足,n∈N*).
(Ⅰ)求,,;
(Ⅱ)猜想{}的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明;
(Ⅲ)設(shè),且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{an}中,Sn是它的前n項(xiàng)和,并且Sn+1=4an+2(n=1,2,…),a1=1.
(1)設(shè)bn=an+1-2an(n=1,2,…),求證:數(shù)列{bn}是等比數(shù)列;
(2)設(shè)cn=(n=1,2,…),求證:數(shù)列{cn}是等差數(shù)列;
(3)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在數(shù)列中,,其中,求數(shù)列的通項(xiàng)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)求證:(用兩種方法證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

用數(shù)學(xué)歸納法證明1+q+q2+…+qn+1=
qn+2-1
q-1
(q≠1)
.在驗(yàn)證n=1等式成立時(shí),等式的左邊的式子是( 。
A.1B.1+qC.1+q+q2D.1+q+q2+q3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

復(fù)數(shù)的共軛復(fù)數(shù)等于(  )
            

查看答案和解析>>

同步練習(xí)冊(cè)答案