【題目】在公差不為零的等差數(shù)列{an}中,a2=1,a2、a4、a8成等比數(shù)列.
(1)求數(shù)列{an}的通項公式an;
(2)設(shè)數(shù)列{an}的前n項和為Sn , 記bn= .Tn=b1+b2+…+bn , 求Tn

【答案】
(1)解:公差d不為零的等差數(shù)列{an}中,滿足a2=1,a2、a4、a8成等比數(shù)列.

∴a1+d=1, =a2a8即(1+2d)2=1×(1+6d),

解得

∴an= =


(2)解:由(1)可得:Sn= =

∴bn= = =4

∴Tn=b1+b2+…+bn= +…+ ]=4 =


【解析】(1)公差d不為零的等差數(shù)列{an}中,滿足a2=1,a2、a4、a8成等比數(shù)列.可得a1+d=1, =a2a8即(1+2d)2=1×(1+6d),解出即可得出.(2)由(1)可得:Sn= .可得bn= = =4 .利用“裂項求和”即可得出.
【考點精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項和的相關(guān)知識,掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系,以及對數(shù)列的通項公式的理解,了解如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是實數(shù),,

1)若函數(shù)為奇函數(shù),求的值;

2)試用定義證明:對于任意,上為單調(diào)遞增函數(shù);

3)若函數(shù)為奇函數(shù),且不等式對任意恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了展示中華漢字的無窮魅力,傳遞傳統(tǒng)文化,提高學(xué)習(xí)熱情,某校開展《中國漢字聽寫大會》的活動.為響應(yīng)學(xué)校號召,2(9)班組建了興趣班,根據(jù)甲、乙兩人近期8次成績畫出莖葉圖,如圖所示,甲的成績中有一個數(shù)的個位數(shù)字模糊,在莖葉圖中用表示.(把頻率當(dāng)作概率).

(1)假設(shè),現(xiàn)要從甲、乙兩人中選派一人參加比賽,從統(tǒng)計學(xué)的角度,你認(rèn)為派哪位學(xué)生參加比較合適?

(2)假設(shè)數(shù)字的取值是隨機(jī)的,求乙的平均分高于甲的平均分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有下列四個命題:

①已知-1<ab<0,則0.3aa2ab;

②若正實數(shù)a、b滿足a+b=1,則ab有最大值;

③若正實數(shù)a、b滿足a+b=1,則有最大值;

x,y∈(0,+∞),x3+y3x2y+xy2

其中真命題的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解關(guān)于x的不等式ax2-(2a+3)x+6>0(aR).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的焦點坐標(biāo)是F1(﹣1,0)、F2(1,0),過點F2垂直于長軸的直線l交橢圓C于B、D兩點,且|BD|=3.
(1)求橢圓C的方程;
(2)過定點P(0,2)且斜率為k的直線l與橢圓C相交于不同兩點M,N,試判斷:在x軸上是否存在點A(m,0),使得以AM,AN為鄰邊的平行四邊形為菱形?若存在,求出實數(shù)m的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為奇函數(shù).

(1)求的值;

(2)求函數(shù)的最小值;

(3)若函數(shù)在區(qū)間上單調(diào)遞減,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x+log2x+b在區(qū)間( ,4)上有零點,則實數(shù)b的取值范圍是(
A.(﹣10,0)
B.(﹣8,1)
C.(0,10)
D.(1,12)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個班級共有105名學(xué)生,某次數(shù)學(xué)考試按照“大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀”的原則統(tǒng)計成績后,得到如下列聯(lián)表。

優(yōu)秀

非優(yōu)秀

總計

甲班

10

乙班

30

總計

105

已知從甲、乙兩個班級中隨機(jī)抽取1名學(xué)生,其成績?yōu)閮?yōu)秀的概率為.

(1)請完成上面的列聯(lián)表;

(2)能否有把握認(rèn)為成績與班級有關(guān)系?

查看答案和解析>>

同步練習(xí)冊答案