已知?jiǎng)狱c(diǎn)M到定點(diǎn)F1(-2,0)和F2(2,0)的距離之和為4
2

(I)求動(dòng)點(diǎn)M軌跡C的方程;
(II)設(shè)N(0,2),過(guò)點(diǎn)P(-1,-2)作直線(xiàn)l,交橢圓C異于N的A、B兩點(diǎn),直線(xiàn)NA、NB的斜率分別為k1、k2,證明:kl+k2為定值.
分析:(Ⅰ)直接由橢圓的定義的動(dòng)點(diǎn)M的軌跡方程;
(Ⅱ)分直線(xiàn)l的斜率存在和不存在兩種情況討論,斜率不存在時(shí),直接求出A,B的坐標(biāo),則k1、k2可求,求出kl+k2=4,當(dāng)斜率存在時(shí),設(shè)出直線(xiàn)l的方程,和橢圓方程聯(lián)立后化為關(guān)于x的一元二次方程,利用根與系數(shù)關(guān)系得到A,B兩點(diǎn)橫坐標(biāo)的和與積,寫(xiě)出斜率的和后代入A,B兩點(diǎn)的橫坐標(biāo)的和與積,整理后得到kl+k2=4.從而證得答案.
解答:(Ⅰ)解:由橢圓定義,可知點(diǎn)M的軌跡是以F1、F2為焦點(diǎn),以4
2
為長(zhǎng)軸長(zhǎng)的橢圓.
由c=2,a=2
2
,得b2=a2-c2=8-4=4.
故曲線(xiàn)C的方程為
x2
8
+
y2
4
=1
;
(Ⅱ)證明:如圖,
當(dāng)直線(xiàn)l的斜率存在時(shí),設(shè)其方程為y+2=k(x+1),
x2
8
+
y2
4
=1
y+2=k(x+1)
,得(1+2k2)x2+4k(k-2)x+2k2-8k=0.
設(shè)A(x1,y1),B(x2,y2),
x1+x2=-
4k(k-2)
1+2k2
,x1x2=
2k2-8k
1+2k2

從而k1+k2=
y1-2
x1
+
y2-2
x2
=
2kx1x2+(k-4)(x1+x2)
x1x2
=2k-(k-4)
4k(k-2)
2k2-8k
=4

當(dāng)直線(xiàn)l的斜率不存在時(shí),得A(-1,
14
2
),B(-1,-
14
2
)

得kl+k2=
14
2
-2
-1
+
-
14
2
-2
-1
=4.
綜上,恒有kl+k2=4,為定值.
點(diǎn)評(píng):本題考查了橢圓的標(biāo)準(zhǔn)方程,考查了直線(xiàn)和圓錐曲線(xiàn)的關(guān)系,考查了分類(lèi)討論的數(shù)學(xué)思想方法,此類(lèi)問(wèn)題常用直線(xiàn)方程和圓錐曲線(xiàn)方程聯(lián)立,利用一元二次方程的根與系數(shù)關(guān)系求解,考查了學(xué)生的計(jì)算能力,屬難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)狱c(diǎn)M到兩個(gè)定點(diǎn)F1(-3,0),F(xiàn)2(3,0)的距離之和為10,A、B是動(dòng)點(diǎn)M軌跡C上的任意兩點(diǎn).
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)若原點(diǎn)O滿(mǎn)足條件
AO
OB
,點(diǎn)P是C上不與A、B重合的一點(diǎn),如果PA、PB的斜率都存在,問(wèn)kPA•kPB是否為定值?若是,求出其值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn)分別為F1、F2,P是橢圓上一點(diǎn),且∠F1PF2=60°,設(shè)
|PF1|
|PF2|

(1)求橢圓C的離心率e和λ的函數(shù)關(guān)系式e=f(λ)
(2)若橢圓C的離心率e最小,且橢圓C上的動(dòng)點(diǎn)M到定點(diǎn)N(0,
1
2
)
的最遠(yuǎn)距離為
5
,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)狱c(diǎn)M(x,y)到定點(diǎn)F1(-1,0)與到定點(diǎn)F2(1,0)的距離之比為3.
(Ⅰ)求動(dòng)點(diǎn)M的軌跡C的方程,并指明曲線(xiàn)C的軌跡;
(Ⅱ)設(shè)直線(xiàn)l:x=x+b,若曲線(xiàn)C上恰有兩個(gè)點(diǎn)到直線(xiàn)l的距離為1,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年山東省泰安市肥城市省級(jí)規(guī)范化學(xué)校高三第三次聯(lián)考數(shù)學(xué)試卷2(文理合卷)(解析版) 題型:解答題

已知?jiǎng)狱c(diǎn)M到兩個(gè)定點(diǎn)F1(-3,0),F(xiàn)2(3,0)的距離之和為10,A、B是動(dòng)點(diǎn)M軌跡C上的任意兩點(diǎn).
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)若原點(diǎn)O滿(mǎn)足條件,點(diǎn)P是C上不與A、B重合的一點(diǎn),如果PA、PB的斜率都存在,問(wèn)kPA•kPB是否為定值?若是,求出其值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案