已知橢圓的方程為,點(diǎn)分別為其左、右頂點(diǎn),點(diǎn)分別為其左、右焦點(diǎn),以點(diǎn)為圓心,為半徑作圓;以點(diǎn)為圓心,為半徑作圓;若直線被圓和圓截得的弦長(zhǎng)之比為;
(1)求橢圓的離心率;
(2)己知,問是否存在點(diǎn),使得過點(diǎn)有無(wú)數(shù)條直線被圓和圓截得的弦長(zhǎng)之比為;若存在,請(qǐng)求出所有的點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
解:(1)由,得直線的傾斜角為,
則點(diǎn)到直線的距離
故直線被圓截得的弦長(zhǎng)為,
直線被圓截得的弦長(zhǎng)為,                 (3分)
據(jù)題意有:,即,                      (5分)
化簡(jiǎn)得:,
解得:,又橢圓的離心率
故橢圓的離心率為.(7分)
(2)假設(shè)存在,設(shè)點(diǎn)坐標(biāo)為,過點(diǎn)的直線為;
當(dāng)直線的斜率不存在時(shí),直線不能被兩圓同時(shí)所截;
故可設(shè)直線的方程為,
則點(diǎn)到直線的距離,
由(1)有,得=,
故直線被圓截得的弦長(zhǎng)為,                       (9分)
則點(diǎn)到直線的距離,
,故直線被圓截得的弦長(zhǎng)為,             (11分)
據(jù)題意有:,即有,整理得,
,兩邊平方整理成關(guān)于的一元二次方程得
,                 (13分)
關(guān)于的方程有無(wú)窮多解,
故有:
故所求點(diǎn)坐標(biāo)為(-1,0)或(-49,0).                          (16分)
(注設(shè)過P點(diǎn)的直線為后求得P點(diǎn)坐標(biāo)同樣得分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題14分)

(圖4)

 
橢圓的離心率為,且過點(diǎn).

⑴求橢圓的方程;
⑵當(dāng)直線與橢圓相交時(shí),求m的取值范圍;
⑶設(shè)直線與橢圓交于兩點(diǎn),為坐標(biāo)原點(diǎn),若,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線y = x +1被橢圓x 2+2y 2=4所截得的弦的中點(diǎn)坐標(biāo)是     (   )
A.(, -)B.(-, )
C.(, -)D.(-,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若直線與曲線有公共點(diǎn),則實(shí)數(shù)的取值范圍是( ▲ ) 
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)已知A,B分別是直線yxy=-x上的兩個(gè)動(dòng)點(diǎn),線段AB的長(zhǎng)為2,DAB的中點(diǎn).
(1)求動(dòng)點(diǎn)D的軌跡C的方程;
(2)若過點(diǎn)(1,0)的直線l與曲線C交于不同兩點(diǎn)PQ,
①當(dāng)|PQ|=3時(shí),求直線l的方程;
②設(shè)點(diǎn)E(m,0)是x軸上一點(diǎn),求當(dāng)·恒為定值時(shí)E點(diǎn)的坐標(biāo)及定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知定點(diǎn)(1,0)和定圓B:動(dòng)圓P和定圓B相切并過A點(diǎn),
(1)  求動(dòng)圓P的圓心P的軌跡C的方程。
(2)  設(shè)Q是軌跡C上任意一點(diǎn),求的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)在平面直角坐標(biāo)系中,設(shè)點(diǎn),直線:,點(diǎn)在直線上移動(dòng),是線段軸的交點(diǎn),
(I)求動(dòng)點(diǎn)的軌跡的方程
(II)設(shè)圓,且圓心在曲上, 設(shè)圓,且圓心在曲線 上,是圓軸上截得的弦,當(dāng)運(yùn)動(dòng)時(shí)弦長(zhǎng)是否為定值?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)設(shè)橢圓的左、右焦點(diǎn)分別為F1
F2,直線過橢圓的一個(gè)焦點(diǎn)F2且與橢圓交于P、Q兩點(diǎn),若的周長(zhǎng)為。
(1)求橢圓C的方程;
(2)設(shè)橢圓C經(jīng)過伸縮變換變成曲線,直線與曲線相切
且與橢圓C交于不同的兩點(diǎn)A、B,若,求面積的取值范圍。(O為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

給出下列命題:
,使得;    ②曲線表示雙曲線;
的遞減區(qū)間為 ④對(duì),使得其中真命題為       (填上序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案