【題目】已知橢圓的離心率為,點為橢圓上一點.
(1)求橢圓C的方程;
(2)已知兩條互相垂直的直線,經過橢圓的右焦點,與橢圓交于四點,求四邊形面積的的取值范圍.
【答案】(1);(2)
【解析】
(1)由題意可得,解得進而得到橢圓的方程;(2)設出直線l1,l2的方程,直線和橢圓方程聯立,運用韋達定理和弦長公式,分別求得|AB|,|MN|,再由四邊形的面積公式,化簡整理計算即可得到取值范圍.
(1)由題意可得,解得a2=4,b2=3,c2=1
故橢圓C的方程為;
(2)當直線l1的方程為x=1時,此時直線l2與x軸重合,
此時|AB|=3,|MN|=4,
∴四邊形AMBN面積為S|AB||MN|=6.
設過點F(1,0)作兩條互相垂直的直線l1:x=ky+1,直線l2:xy+1,
由x=ky+1和橢圓1,可得(3k2+4)y2+6ky﹣9=0,
判別式顯然大于0,y1+y2,y1y2,
則|AB|,
把上式中的k換為,可得|MN|
則有四邊形AMBN面積為S|AB||MN|,>
令1+k2=t,則3+4k2=4t﹣1,3k2+4=3t+1,
則S,
∴t>1,
∴01,
∴y=﹣()2,在(0,)上單調遞增,在(,1)上單調遞減,
∴y∈(12,],
∴S∈[,6)
故四邊形PMQN面積的取值范圍是
科目:高中數學 來源: 題型:
【題目】已知函數的相鄰兩對稱軸間的距離為,若將的圖像先向左平移個單位,再向下平移個單位,所得的函數為奇函數.
(1)求的解析式;
(2)若關于的方程在區(qū)間上有兩個不等實根,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】這是今年雙十一的兩道題目,第一題是雙十一之前網上流傳甚廣的小明買衛(wèi)衣問題,第二題是有關某老師的雙十一戰(zhàn)果.
(1)小明想在雙十一買價值399的衛(wèi)衣,已知付定金20元有訂金三倍膨脹活動,但僅限當天0到2點,2點以后訂金可抵用50元,但有付尾款前500名免定金活動,同時該店鋪有399減20和299減10的優(yōu)惠券(其使用門檻是訂金尾款訂金膨脹優(yōu)惠金額大于等于優(yōu)惠券),還有一種379減20和279減10的折扣券(其使用門檻是尾款膨脹優(yōu)惠金額大于等于折扣券面額),優(yōu)惠和折扣只能選一種,求小明最低多少錢能買到這件衛(wèi)衣?如果你是小明,你會選擇怎樣購買?
(2)某老師在雙十一前花1元,搶到了某商家滿的一張優(yōu)惠券,該商家沒有訂金膨脹活動,但該商家有多買多優(yōu)惠活動:滿3件9折,5件8折,10件及以上7折,同時可用淘寶的購物津貼(可跨店滿減,店鋪優(yōu)惠后參加該活動,但運費不在其中),現已知該老師本單共花了元(1是買券錢,119.78是雙十一付款,其中含運費6元).
請問:該老師本次購買的商品價值最低多少?最高多少?(按商家標示的淘寶價格計算,精確到元即可,已知該老師用了券)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面是菱形,,為等邊三角形,是線段上的一點,且平面.
(1)求證:為的中點;
(2)若為的中點,連接,,,,平面平面,,求三棱錐的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為慶祝黨的98歲生日,某高校組織了“歌頌祖國,緊跟黨走”為主題的黨史知識競賽。從參加競賽的學生中,隨機抽取40名學生,將其成績分為六段,,,,,,到如圖所示的頻率分布直方圖.
(1)求圖中的值及樣本的中位數與眾數;
(2)若從競賽成績在與兩個分數段的學生中隨機選取兩名學生,設這兩名學生的競賽成績之差的絕對值不大于分為事件,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點也是橢圓的一個焦點,點在橢圓短軸上,且.
(1)求橢圓的方程;
(2)設為橢圓上的一個不在軸上的動點,為坐標原點,過橢圓的右焦點作的平行線,交曲線于兩點,求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右頂點為,上頂點為,右焦點為.連接并延長與橢圓相交于點,且
(Ⅰ)求橢圓的方程;
(Ⅱ)設經過點的直線與橢圓相交于不同的兩點,直線分別與直線相交于點,點.若的面積是的面積的2倍,求直線的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com