已知函數(shù)f(x)的定義域?yàn)椋?,+∞),若y=數(shù)學(xué)公式在(0,+∞)上為增函數(shù),則稱f(x) 為“一階比增函數(shù)”.
(Ⅰ) 若f(x)=ax2+ax是“一階比增函數(shù)”,求實(shí)數(shù)a的取值范圍;
(Ⅱ) 若f(x)是“一階比增函數(shù)”,求證:?x1,x2∈(0,+∞),f(x1)+f(x2)<f(x1+x2);
(Ⅲ)若f(x)是“一階比增函數(shù)”,且f(x)有零點(diǎn),求證:f(x)>2013有解.

解:(I)由題意得y==ax+a在(0,+∞)是增函數(shù),
由一次函數(shù)性質(zhì)知:當(dāng)a>0時(shí),y=ax+a在(0,∞)上是增函數(shù),
∴a>0.
(Ⅱ)∵f(x)是“一階比增函數(shù)”,即在(0,+∞)上是增函數(shù),
又?x1,x2∈(0,+∞),有x1<x1+x2,x2<x1+x2,
,
,
+=f(x1+x2).
(Ⅲ)設(shè)f(x0)=0,其中x0>0.
因?yàn)閒(x)是“一階比增函數(shù)”,所以當(dāng)x>x0時(shí),
法一:取t∈(0,+∞),滿足f(t)>0,記f(t)=m.
由(Ⅱ)知f(2t)>2m,同理f(4t)>2f(2t)>4m,f(8t)>2f(4t)>8m.
所以一定存在n∈N*,使得f(2nt)>2nm>2013,
所以f(x)>2013 一定有解.
法二:取t∈(0,+∞),滿足f(t)>0,記
因?yàn)楫?dāng)x>t時(shí),,所以f(x)>kx對x>t成立.
只要 ,則有f(x)>kx>2013,
所以f(x)>2013 一定有解.
分析:(Ⅰ)利用“一階比增函數(shù)”的意義及一次函數(shù)的單調(diào)性即可得出;
(Ⅱ)利用“一階比增函數(shù)”的意義及增函數(shù)的定義即可證明;
(Ⅲ)利用“一階比增函數(shù)”的意義和(Ⅱ)的結(jié)論即可證明.
點(diǎn)評:正確“一階比增函數(shù)”的意義及增函數(shù)的定義及利用已經(jīng)證明過的結(jié)論是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P滿足2
OP
=
OM
+
ON
(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求證:y1+y2為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn;
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的有( 。﹤(gè).
①已知函數(shù)f(x)在(a,b)內(nèi)可導(dǎo),若f(x)在(a,b)內(nèi)單調(diào)遞增,則對任意的?x∈(a,b),有f′(x)>0.
②函數(shù)f(x)圖象在點(diǎn)P處的切線存在,則函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在;反之若函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在,則函數(shù)f(x)圖象在點(diǎn)P處的切線存在.
③因?yàn)?>2,所以3+i>2+i,其中i為虛數(shù)單位.
④定積分定義可以分為:分割、近似代替、求和、取極限四步,對求和In=
n
i=1
f(ξi)△x
中ξi的選取是任意的,且In僅于n有關(guān).
⑤已知2i-3是方程2x2+px+q=0的一個(gè)根,則實(shí)數(shù)p,q的值分別是12,26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個(gè)相鄰函數(shù)的交點(diǎn)為A,B,若m變化時(shí),AB的長度是一個(gè)定值,則AB的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)已知函數(shù)f(x)=x3-x,其圖象記為曲線C.
(i)求函數(shù)f(x)的單調(diào)區(qū)間;
(ii)證明:若對于任意非零實(shí)數(shù)x1,曲線C與其在點(diǎn)P1(x1,f(x1))處的切線交于另一點(diǎn)P2(x2,f(x2)),曲線C與其在點(diǎn)P2(x2,f(x2))處的切線交于另一點(diǎn)P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積記為S1,S2.則
S1S2
為定值;
(Ⅱ)對于一般的三次函數(shù)g(x)=ax3+bx2+cx+d(a≠0),請給出類似于(Ⅰ)(ii)的正確命題,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax+b存在極值點(diǎn).
(1)求a的取值范圍;
(2)過曲線y=f(x)外的點(diǎn)P(1,0)作曲線y=f(x)的切線,所作切線恰有兩條,切點(diǎn)分別為A、B.
(。┳C明:a=b;
(ⅱ)請問△PAB的面積是否為定值?若是,求此定值;若不是求出面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案