已知點在曲線上,點在曲線上,則的最小值是
解析試題分析:∵曲線y=ex(e自然對數(shù)的底數(shù))與曲線y=lnx互為反函數(shù),其圖象關(guān)于y=x對稱,則對于求解的最小值問題,故可先求點P到直線y=x的最近距離d,設(shè)曲線y=ex上斜率為1的切線為y=x+b,∵y′=ex,由ex=1,得x=0,故切點坐標(biāo)為(0,1),即b=1,∴d=,∴丨PQ丨的最小值為2d=。
考點:本題主要考查了互為反函數(shù)的函數(shù)圖象的對稱性,導(dǎo)數(shù)的幾何意義,曲線的切線方程的求法,轉(zhuǎn)化化歸的思想方法
點評:考慮到兩曲線關(guān)于直線y=x對稱,求丨PQ丨的最小值可轉(zhuǎn)化為求P到直線y=x的最小距離,再利用導(dǎo)數(shù)的幾何意義,求曲線上斜率為1的切線方程,從而得此距離。
科目:高中數(shù)學(xué) 來源: 題型:填空題
若函數(shù)在其定義域內(nèi)的一個子區(qū)間內(nèi)不是單調(diào)函數(shù),則實數(shù)的取值范圍是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com